|
|
A051130
|
|
Indices of prime Bell numbers A000110.
|
|
10
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Bell(2841) has been certified to be a prime using Primo. This took 17 months on a P3-800, a P4-2400 and finally a P4-2800. There are no other terms below 6000. - Ignacio Larrosa Cañestro, Feb 13 2004
The next term, if it exists, is > 50000. - Vaclav Kotesovec, May 18 2021
No other terms < 100000. - Mathieu Gouttenoire, Oct 31 2021
|
|
LINKS
|
Table of n, a(n) for n=1..7.
E. T. Bell, Exponential numbers, Amer. Math. Monthly, 41 (1934), 411-419.
The Prime Database, 93074010508593618333...(6499 other digits)...83885253703080601131
Eric Weisstein's World of Mathematics, Bell Number
Eric Weisstein's World of Mathematics, Integer Sequence Primes
|
|
EXAMPLE
|
The Bell numbers Bell(2)=2, Bell(3)=5, Bell(7)=877 etc. are primes.
|
|
MATHEMATICA
|
Reap[For[n = 1, n <= 3000, n++, If[PrimeQ[BellB[n]], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 05 2012 *)
Select[Range[2900], PrimeQ[BellB[#]]&] (* Harvey P. Dale, Nov 08 2012 *)
|
|
PROG
|
(Magma) [n: n in [0..1000]|IsPrime(Bell(n))]; // Vincenzo Librandi, Jan 30 2016
|
|
CROSSREFS
|
Cf. A000110, A051131.
Sequence in context: A293994 A196419 A056893 * A078749 A046062 A096263
Adjacent sequences: A051127 A051128 A051129 * A051131 A051132 A051133
|
|
KEYWORD
|
hard,nonn,nice
|
|
AUTHOR
|
Ignacio Larrosa Cañestro
|
|
STATUS
|
approved
|
|
|
|