login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of prime Bell numbers A000110.
10

%I #46 Feb 17 2022 00:35:47

%S 2,3,7,13,42,55,2841

%N Indices of prime Bell numbers A000110.

%C Bell(2841) has been certified to be a prime using Primo. This took 17 months on a P3-800, a P4-2400 and finally a P4-2800. There are no other terms below 6000. - _Ignacio Larrosa Cañestro_, Feb 13 2004

%C The next term, if it exists, is > 50000. - _Vaclav Kotesovec_, May 18 2021

%C No other terms < 100000. - _Mathieu Gouttenoire_, Oct 31 2021

%H E. T. Bell, <a href="http://www.jstor.org/stable/2300300">Exponential numbers</a>, Amer. Math. Monthly, 41 (1934), 411-419.

%H The Prime Database, <a href="https://primes.utm.edu/primes/page.php?id=68825">93074010508593618333...(6499 other digits)...83885253703080601131</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BellNumber.html">Bell Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>

%e The Bell numbers Bell(2)=2, Bell(3)=5, Bell(7)=877 etc. are primes.

%t Reap[For[n = 1, n <= 3000, n++, If[PrimeQ[BellB[n]], Print[n]; Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Jun 05 2012 *)

%t Select[Range[2900],PrimeQ[BellB[#]]&] (* _Harvey P. Dale_, Nov 08 2012 *)

%o (Magma) [n: n in [0..1000]|IsPrime(Bell(n))]; // _Vincenzo Librandi_, Jan 30 2016

%Y Cf. A000110, A051131.

%K hard,nonn,nice

%O 1,1

%A _Ignacio Larrosa Cañestro_