login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051127
Table T(n,k) = k mod n read by antidiagonals (n >= 1, k >= 1).
13
0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 2, 1, 0, 1, 1, 3, 2, 1, 0, 0, 2, 0, 3, 2, 1, 0, 1, 0, 1, 4, 3, 2, 1, 0, 0, 1, 2, 0, 4, 3, 2, 1, 0, 1, 2, 3, 1, 5, 4, 3, 2, 1, 0, 0, 0, 0, 2, 0, 5, 4, 3, 2, 1, 0, 1, 1, 1, 3, 1, 6, 5, 4, 3, 2, 1, 0, 0, 2, 2, 4, 2, 0, 6, 5, 4, 3, 2, 1, 0, 1, 0, 3, 0, 3, 1, 7, 6, 5, 4, 3, 2, 1
OFFSET
1,9
COMMENTS
Note that the upper right half of this sequence when formatted as a square array is essentially the same as this whole sequence when formatted as an upper right triangle. Sums of antidiagonals are A004125. - Henry Bottomley, Jun 22 2001
LINKS
FORMULA
As a linear array, the sequence is a(n) = A004736(n) mod A002260(n) or a(n) = ((t*t+3*t+4)/2-n) mod (n-(t*(t+1)/2)), where t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 17 2012
G.f. for the n-th row: y*Sum_{i=0..n-2} (i + 1)*y^i/(1 - y^n). - Stefano Spezia, May 08 2024
EXAMPLE
0 0 0 0 0 0 0 0 0 0 ...
1 0 1 0 1 0 1 0 1 0 ...
1 2 0 1 2 0 1 2 0 1 ...
1 2 3 0 1 2 3 0 1 2 ...
1 2 3 4 0 1 2 3 4 0 ...
1 2 3 4 5 0 1 2 3 4 ...
1 2 3 4 5 6 0 1 2 3 ...
1 2 3 4 5 6 7 0 1 2 ...
1 2 3 4 5 6 7 8 0 1 ...
1 2 3 4 5 6 7 8 9 0 ...
1 2 3 4 5 6 7 8 9 10 ...
1 2 3 4 5 6 7 8 9 10 ...
1 2 3 4 5 6 7 8 9 10 ...
MATHEMATICA
T[n_, m_] = Mod[n - m + 1, m + 1]; Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] (* Roger L. Bagula, Sep 04 2008 *)
PROG
(PARI) T(n, k)=k%n \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Transpose of A051126.
Sequence in context: A227834 A025894 A339087 * A070176 A092606 A374133
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from James A. Sellers, Dec 11 1999
STATUS
approved