login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051777
Triangle read by rows, where row (n) = n mod n, n mod (n-1), n mod (n-2), ...n mod 1.
6
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 1, 2, 3, 0, 2, 0, 0, 0, 1, 2, 3, 4, 1, 0, 1, 0, 0, 1, 2, 3, 4, 0, 2, 1, 0, 0, 0, 1, 2, 3, 4, 5, 1, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 0, 2, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 1, 3, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 6, 0, 2, 4, 2, 2, 0, 0
OFFSET
1,13
COMMENTS
Also, rectangular array read by antidiagonals, a(n, k) = k mod n (k >= 0, n >= 1). Cf. A048158, A051127. - David Wasserman, Oct 01 2008
Central terms: a(2*n - 1, n) = n - 1. - Reinhard Zumkeller, Jan 25 2011
LINKS
EXAMPLE
row (5) = 5 mod 5, 5 mod 4, 5 mod 3, 5 mod 2, 5 mod 1 = 0, 1, 2, 1, 0.
0 ;
0 0 ;
0 1 0 ;
0 1 0 0 ;
0 1 2 1 0;
0 1 2 0 0 0 ;
0 1 2 3 1 1 0 ;
0 1 2 3 0 2 0 0;
0 1 2 3 4 1 0 1 0 ;
0 1 2 3 4 0 2 1 0 0 ;
0 1 2 3 4 5 1 3 2 1 0 ;
0 1 2 3 4 5 0 2 0 0 0 0 ;
0 1 2 3 4 5 6 1 3 1 1 1 0 ;
MATHEMATICA
Flatten[Table[Mod[n, Range[n, 1, -1]], {n, 20}]] (* Harvey P. Dale, Nov 30 2011 *)
PROG
(Haskell)
a051777 n k = a051777_row n !! (k-1)
a051777_row n = map (mod n) [n, n-1 .. 1]
a051777_tabl = map a051777_row [1..]
-- Reinhard Zumkeller, Jan 25 2011
CROSSREFS
Cf. A051778. Row sums give A004125. Number of 0's in row n gives A000005 (tau(n)). Number of 1's in row n+1 gives A032741(n).
Sequence in context: A035468 A369311 A263860 * A262709 A107628 A268389
KEYWORD
easy,nice,nonn,tabl
AUTHOR
Asher Auel, Dec 09 1999
STATUS
approved