login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262709
Expansion of f(-x^4, -x^4) * f(-x, -x^5) in powers of x where f(, ) is Ramanujan's general theta function.
1
1, -1, 0, 0, -2, 1, 0, 0, 1, 2, 0, 0, -2, 0, 0, 0, 3, -2, 0, 0, -2, -3, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, -1, 0, 0, -2, 2, 0, 0, 1, 2, 0, 0, -4, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 3, 2, 0, 0, -2, 0, 0, 0, 2, -3, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, -2, 0, 0, 0, 2, -2
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * eta(q) * eta(q^4)^2 * eta(q^6)^2 / (eta(q^2) * eta(q^3) * eta(q^8)) in powers of q.
Euler transform of period 24 sequence [ -1, 0, 0, -2, -1, -1, -1, -1, 0, 0, -1, -3, -1, 0, 0, -1, -1, -1, -1, -2, 0, 0, -1, -2, ...].
EXAMPLE
G.f. = 1 - x - 2*x^4 + x^5 + x^8 + 2*x^9 - 2*x^12 + 3*x^16 - 2*x^17 + ...
G.f. = q - q^4 - 2*q^13 + q^16 + q^25 + 2*q^28 - 2*q^37 + 3*q^49 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^4] (EllipticTheta[ 4, 0, x^3] - EllipticTheta[ 4, 0, x^(1/3)]) / (2 x^(1/3)), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^8 + A)), n))};
CROSSREFS
Sequence in context: A369311 A263860 A051777 * A107628 A268389 A288969
KEYWORD
sign
AUTHOR
Michael Somos, Sep 28 2015
STATUS
approved