login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369311
Square array A(n, k), n >= 0, k > 0, read by upwards antidiagonals: P(A(n, k)) is the remainder of the polynomial long division of P(n) by P(k) (where P(m) denotes the polynomial over GF(2) whose coefficients are encoded in the binary expansion of the nonnegative integer m).
2
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 3, 2, 1, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 1, 0, 1, 1, 3, 2, 1, 0, 0, 0, 1, 2, 0, 2, 3, 2, 1, 0, 0, 1, 1, 3, 3, 3, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 0, 2, 4, 3, 2, 1, 0, 0, 1, 0, 1, 2, 1, 1, 5, 4, 3, 2, 1, 0
OFFSET
0,19
COMMENTS
For any number m >= 0 with binary expansion Sum_{k >= 0} b_k * 2^k, P(m) = Sum_{k >= 0} b_k * X^k.
EXAMPLE
Array A(n, k) begins:
n\k | 1 2 3 4 5 6 7 8 9 10 11 12
----+--------------------------------------
0 | 0 0 0 0 0 0 0 0 0 0 0 0
1 | 0 1 1 1 1 1 1 1 1 1 1 1
2 | 0 0 1 2 2 2 2 2 2 2 2 2
3 | 0 1 0 3 3 3 3 3 3 3 3 3
4 | 0 0 1 0 1 2 3 4 4 4 4 4
5 | 0 1 0 1 0 3 2 5 5 5 5 5
6 | 0 0 0 2 3 0 1 6 6 6 6 6
7 | 0 1 1 3 2 1 0 7 7 7 7 7
8 | 0 0 1 0 2 2 1 0 1 2 3 4
9 | 0 1 0 1 3 3 0 1 0 3 2 5
10 | 0 0 0 2 0 0 3 2 3 0 1 6
11 | 0 1 1 3 1 1 2 3 2 1 0 7
12 | 0 0 0 0 3 0 2 4 5 6 7 0
PROG
(PARI) A(n, k) = { fromdigits(lift(Vec( (Mod(1, 2) * Pol(binary(n))) % (Mod(1, 2) * Pol(binary(k))))), 2) }
CROSSREFS
See A369312 for the corresponding quotients.
Sequence in context: A324904 A109708 A035468 * A263860 A051777 A262709
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Jan 19 2024
STATUS
approved