login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369314
Number of chiral pairs of polyominoes composed of n triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}.
6
1, 2, 7, 22, 68, 214, 691, 2240, 7396, 24702, 83469, 284928, 981814, 3410990, 11939752, 42075308, 149180356, 531866972, 1905872189, 6861162880, 24805796984, 90035940942, 327988261992, 1198853954688, 4395798528850
OFFSET
4,2
COMMENTS
A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.
LINKS
FORMULA
a(n) = C(2n,2)/(2(n+1)(n+2)) - [2\(n+1)]*C(n,(n+1)/2)/(2n) - [2\n]*C(n,n/2)/(2n+4) + [3\(n-1)]*C((2n+1)/3,(n-1)/3)/(2n+1).
a(n) = A001683(n+2) - A000207(n) = (A001683(n+2) - A208355(n-1)) / 2 = A000207(n) - A208355(n-1).
EXAMPLE
________ ________ ________ ________ ________ ________
\ /\ /\ /\ /\ / \ /\ /\ /\ /\ / \ /\ /\ /\ /\ /
\/__\/__\ /__\/__\/ \/__\/__\ /__\/__\/ \/__\/__\ /__\/__\/
\ / \ / \ / \ /
a(4)=1; a(5)=2. \/ \/ \/ \/
MATHEMATICA
Table[Binomial[2n, n]/(2(n+1)(n+2))-If[OddQ[n], Binomial[n, (n+1)/2]/n, Binomial[n, n/2]/(n+2)]/2+If[Divisible[n-1, 3], Binomial[(2n+1)/3, (n-1)/3]/(2n+1), 0], {n, 4, 20}]
CROSSREFS
Polyominoes: A001683(n+2) (oriented), A000207 (unoriented), A208355(n-1) (achiral).
Sequence in context: A037552 A308113 A291012 * A294005 A333494 A292399
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jan 19 2024
STATUS
approved