OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..550
Wikipedia, Counting lattice paths
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 3.7137893481485186502229788321701955452444... and c = 0.47404607017890475336081188752626598456... - Vaclav Kotesovec, May 24 2019
MAPLE
b:= proc(x, y) option remember; `if`(y=0, 1, add(add(`if`(x+v
>y+h or igcd(h, v)>1, 0, b(x-h, y-v)), v=1..y), h=1..x))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30);
MATHEMATICA
b[x_, y_] := b[x, y] = If[y == 0, 1, Sum[Sum[If[x + v > y + h || GCD[h, v] > 1, 0, b[x - h, y - v]], {v, 1, y}], {h, 1, x}]];
a[n_] := b[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 13 2019
STATUS
approved