login
A294005
Number of multisets of exactly three nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
2
1, 2, 7, 22, 68, 218, 721, 2438, 8491, 30478, 112524, 428382, 1678600, 6778708, 28169286, 120516092, 530081370, 2396797920, 11125584584, 52993063796, 258676491628, 1293160049244, 6612750833996, 34564483264256, 184470133103464, 1004514566402816
OFFSET
3,2
LINKS
FORMULA
a(n) = [x^n y^3] Product_{j>=1} 1/(1-y*x^j)^A000085(j).
MAPLE
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n,
add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 4)
end:
a:= n-> coeff(b(n$2), x, 3):
seq(a(n), n=3..30);
CROSSREFS
Column k=3 of A293808.
Cf. A000085.
Sequence in context: A308113 A291012 A369314 * A333494 A292399 A094618
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 21 2017
STATUS
approved