login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, where row (n) = n mod n, n mod (n-1), n mod (n-2), ...n mod 1.
6

%I #21 Oct 27 2023 22:00:45

%S 0,0,0,0,1,0,0,1,0,0,0,1,2,1,0,0,1,2,0,0,0,0,1,2,3,1,1,0,0,1,2,3,0,2,

%T 0,0,0,1,2,3,4,1,0,1,0,0,1,2,3,4,0,2,1,0,0,0,1,2,3,4,5,1,3,2,1,0,0,1,

%U 2,3,4,5,0,2,0,0,0,0,0,1,2,3,4,5,6,1,3,1,1,1,0,0,1,2,3,4,5,6,0,2,4,2,2,0,0

%N Triangle read by rows, where row (n) = n mod n, n mod (n-1), n mod (n-2), ...n mod 1.

%C Also, rectangular array read by antidiagonals, a(n, k) = k mod n (k >= 0, n >= 1). Cf. A048158, A051127. - _David Wasserman_, Oct 01 2008

%C Central terms: a(2*n - 1, n) = n - 1. - _Reinhard Zumkeller_, Jan 25 2011

%H Reinhard Zumkeller, <a href="/A051777/b051777.txt">Rows n=1..150 of triangle, flattened</a>

%e row (5) = 5 mod 5, 5 mod 4, 5 mod 3, 5 mod 2, 5 mod 1 = 0, 1, 2, 1, 0.

%e 0 ;

%e 0 0 ;

%e 0 1 0 ;

%e 0 1 0 0 ;

%e 0 1 2 1 0;

%e 0 1 2 0 0 0 ;

%e 0 1 2 3 1 1 0 ;

%e 0 1 2 3 0 2 0 0;

%e 0 1 2 3 4 1 0 1 0 ;

%e 0 1 2 3 4 0 2 1 0 0 ;

%e 0 1 2 3 4 5 1 3 2 1 0 ;

%e 0 1 2 3 4 5 0 2 0 0 0 0 ;

%e 0 1 2 3 4 5 6 1 3 1 1 1 0 ;

%t Flatten[Table[Mod[n,Range[n,1,-1]],{n,20}]] (* _Harvey P. Dale_, Nov 30 2011 *)

%o (Haskell)

%o a051777 n k = a051777_row n !! (k-1)

%o a051777_row n = map (mod n) [n, n-1 .. 1]

%o a051777_tabl = map a051777_row [1..]

%o -- _Reinhard Zumkeller_, Jan 25 2011

%Y Cf. A051778. Row sums give A004125. Number of 0's in row n gives A000005 (tau(n)). Number of 1's in row n+1 gives A032741(n).

%K easy,nice,nonn,tabl

%O 1,13

%A _Asher Auel_, Dec 09 1999