login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051779
Primes of form pq + 2 where p and q are twin primes.
9
17, 37, 22501, 32401, 57601, 72901, 176401, 324901, 1664101, 1742401, 5336101, 6502501, 7452901, 11289601, 11492101, 18147601, 21622501, 34222501, 34574401, 40449601, 45968401, 81000001, 85377601, 92736901, 110880901, 118592101
OFFSET
1,1
COMMENTS
Starting with 3rd term, 22501, all terms are of the form 900n^2+1 with n=5, 6, 8, 9, 14, 19, 43, 44, 77, 85 (A125251). - Zak Seidov, Dec 07 2008
Primes of the form (p^2 + q^2)/2, where p and q are twin primes. - Thomas Ordowski and Altug Alkan, Mar 19 2017
LINKS
FORMULA
{A037074(k) + 2} INTERSECT {A000040}. {A001359(k) * A006512(k) + 2} INTERSECT {A000040}. {A054735(k)^2 + 2*A054735(k) + 2} INTERSECT {A000040}. - Jonathan Vos Post, May 11 2006
EXAMPLE
The third term 22501 is a member of the sequence because 22501=149*151+2, 22501 is prime and {149,151} is a twin prime pair.
MAPLE
with (numtheory): for n from 1 to 2000 do if (ithprime(n+1)-ithprime(n)=2) then if (tau(ithprime(n)*ithprime(n+1)+2)=2) then print(ithprime(n), ithprime(n+1), ithprime(n)*ithprime(n+1)+2); fi; fi; od;
MATHEMATICA
lst={}; Do[p=Prime[n]; If[Length[Divisors[p-2]]==4&&(Divisors[p-2][[3]]-Divisors[p-2][[2]])==2, AppendTo[lst, p]], {n, 6*10^5}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 08 2008 *)
Select[(First[#]Last[#]+2)&/@Select[Partition[Prime[Range[2700]], 2, 1], Last[#]-First[#]==2&], PrimeQ] (* Harvey P. Dale, Mar 11 2011 *)
Select[2 + Times @@@ Select[ Partition[ Prime@ Range@ 1350, 2, 1], First[#] + 2 == Last[#] &], PrimeQ] (* Robert G. Wilson v, Mar 12 2001 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Joe DeMaio (jdemaio(AT)kennesaw.edu), Dec 09 1999
EXTENSIONS
Edited by R. J. Mathar, Aug 08 2008
STATUS
approved