

A208292


Primes of the form (n^2+1)/26.


3



17, 37, 457, 601, 701, 877, 997, 2017, 3037, 3257, 4957, 5237, 5701, 10601, 11257, 11677, 14737, 15217, 16001, 17317, 17837, 21577, 22157, 24677, 29717, 34057, 39157, 39937, 41201, 50777, 52201, 53101, 75277, 78101, 79201, 89917, 91097, 93001, 94201, 96137
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Equivalently, primes of the form (K^2 + (K+1)^2)/13. The
connection to the primes of the form (m^2+1)/26 is given by m=2*K+1 (m is necessarily odd).
The corresponding m=m(n) values are given in A208293(n).
Equivalently, primes of the form (4*T(K)+1)/13, with the
corresponding triangular numbers T(K):=A000217(K), for
K=K(n)=(m(n)1)/2, given in A208294(n).
For n>=2 the smallest positive representative of the class of
nontrivial solutions of the congruence x^2==1 (Modd a(n)) is
x=m(n). The trivial solution is the class with representative x=1, which also includes 1. For the prime
a(1)=17 the nontrivial solution is 13 (see A002733(2)). Unique nontrivial smallest positive representatives exist for the solutions for any prime of the form 4*k+1, given in A002144. Here the subset with k=k(n)=(a(n)1)/4 appears, namely 4,9,114,150,175,219,.... For Modd n see a comment on A203571.
These primes with corresponding m values are such that floor(m(n)^2/p(n)) = 5^2, n>=1.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..2000


FORMULA

a(n) is the nth member of the increasingly ordered list of primes of the form (m^2+1)/10, where m=m(n) is necessarily an odd integer, the positive one is A208293(n).


EXAMPLE

a(3)=457, m(3)=A208293(3)=109. T(K(3))=A000217((1091)/2)=
A000217(54)=A208294(3)=1485.


MATHEMATICA

Select[(Range[2000]^2 + 1)/26, PrimeQ] (* T. D. Noe, Feb 28 2012 *)


CROSSREFS

Cf. A207337, A207339 (case floor(m^2/p)=3^2); A129307, A027862, A002731 (case floor(m^2/p)=1^2).
Sequence in context: A157467 A093343 A153685 * A121710 A051779 A139579
Adjacent sequences: A208289 A208290 A208291 * A208293 A208294 A208295


KEYWORD

nonn


AUTHOR

Wolfdieter Lang, Feb 27 2012


STATUS

approved



