|
|
A002731
|
|
Numbers k such that (k^2 + 1)/2 is prime.
(Formerly M2444 N0971)
|
|
21
|
|
|
3, 5, 9, 11, 15, 19, 25, 29, 35, 39, 45, 49, 51, 59, 61, 65, 69, 71, 79, 85, 95, 101, 121, 131, 139, 141, 145, 159, 165, 169, 171, 175, 181, 195, 199, 201, 205, 209, 219, 221, 231, 245, 261, 271, 275, 279, 289, 299, 309, 315, 321, 325, 329, 335, 345, 349, 371, 375, 379, 391, 399, 405
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) is the nontrivial solution of the congruence a(n)^2 == 1 (Modd A027862(n)). The trivial one is +1. For Modd n see a comment on A203571. E.g., a(3)^2 = 81 == 1 (Modd 41), see a comment on A027862.
(End)
|
|
REFERENCES
|
L. Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 24.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
Select[Range[400], PrimeQ[(#^2 + 1)/2] &] (* Alonso del Arte, Feb 24 2012 *)
|
|
PROG
|
(PARI)
forstep(n=1, 10^3, 2, if(isprime((n^2+1)/2), print1(n, ", ")));
(Magma) [n: n in [3..410] | IsPrime((n^2+1) div 2) ]; // Vincenzo Librandi, Sep 25 2012
(Haskell)
a002731 n = a002731_list !! (n-1)
a002731_list = filter ((== 1) . a010051 . a000982) [1, 3 ..]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|