The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002728 Number of n X (n+2) binary matrices. (Formerly M3593 N1457) 4
 1, 4, 22, 190, 3250, 136758, 17256831, 7216495370, 10271202313659, 49856692830176512, 826297617412284162618, 46948445432190686211183650, 9200267975562856184153936960940, 6261904454889790650636380541051266410, 14910331834338546882501064075429145637985605 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 0..23 from Alois P. Heinz) A. Kerber, Experimentelle Mathematik, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 19 (1988), 77-83. [Annotated scanned copy] B. Misek, On the number of classes of strongly equivalent incidence matrices, (Czech with English summary) Casopis Pest. Mat. 89 1964 211-218. FORMULA a(n) = sum {1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n+2} (fix A[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fix A[...] = 2^sum {i, j>=1} (gcd(i, j)*s_i*t_j). - Sean A. Irvine, Jul 31 2014 MAPLE b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},       {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))     end: a:= n-> add(add(2^add(add(igcd(i, j)* coeff(s, x, i)*       coeff(t, x, j), j=1..degree(t)), i=1..degree(s))/       mul(i^coeff(s, x, i)*coeff(s, x, i)!, i=1..degree(s))/       mul(i^coeff(t, x, i)*coeff(t, x, i)!, i=1..degree(t)),       t=b(n+2\$2)), s=b(n\$2)): seq(a(n), n=0..12);  # Alois P. Heinz, Aug 01 2014 MATHEMATICA b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Table[Function[{p}, p + j*x^i]@ b[n-i*j, i-1] , {j, 0, n/i}]]] // Flatten; a[n_] := Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+2, n+2]}], {s, b[n, n]}]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 28 2014, after Alois P. Heinz *) CROSSREFS Cf. A002623, A002727, A006148, A002724, A002725. A diagonal of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013 Sequence in context: A112370 A197961 A203120 * A062494 A183274 A303330 Adjacent sequences:  A002725 A002726 A002727 * A002729 A002730 A002731 KEYWORD nonn AUTHOR EXTENSIONS More terms from Vladeta Jovovic, Feb 04 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 09:26 EST 2022. Contains 350454 sequences. (Running on oeis4.)