login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002729
Number of equivalence classes of binary sequences of period n.
(Formerly M0538 N0191)
22
1, 2, 3, 4, 6, 6, 13, 10, 24, 22, 45, 30, 158, 74, 245, 368, 693, 522, 2637, 1610, 7386, 8868, 19401, 16770, 94484, 67562, 216275, 277534, 815558, 662370, 4500267, 2311470, 8466189, 13045108, 31593285, 40937606, 159772176, 103197490, 401913697
OFFSET
0,2
COMMENTS
From Pab Ter (pabrlos2(AT)yahoo.com), Jan 24 2006: (Start)
The number of equivalence classes of sequences of period p, taking values in a set with b elements, is given by:
N(p) = (1/(p*phi(p)))*Sum_{t=0..p-1} Sum_{k=1..p-1 & gcd(p,k)=1} b^C(k,t) where C(k,t), the number of disjoint cycles of the permutations considered, is C(k,t) = Sum_{u=0..p-1} 1/M(k,p/gcd(p,u(k-1)+t)).
If gcd(k,L)=1, M(k,L) denotes the least positive integer M such that 1+k+...+k^(M-1) == 0 (mod L). Also if gcd(k,L)=1 and Ek(L) denotes the exponent of k mod L: M(k,L)=L*Ek(L)/gcd(L,1+k+...+k^(Ek(L)-1)).
(End)
Number of two-colored necklaces of length n, where similar necklaces are counted only once. Two necklaces of length n, given by color functions c and d from {0, ..., n-1} to N (set of natural numbers) are considered similar iff there is a factor f, 0 < f < n, satisfying gcd(f,n) = 1, such that, for all k from {0, ..., n-1}, d(f * k mod n) = c(k). I.e., the bead at position k is moved to f * k mod n. In other words: the sequence counts the orbits of the action of the multiplicative group {f | 0 < f < n, gcd(f,n) = 1} on the set of two-colored necklaces where f maps c to d with the formula above. - Matthias Engelhardt
Counts the same necklaces as A000029 but some of the necklaces viewed as distinct in A000029 are now viewed as equal. In particular, this implies that a(n) <= A000029(n) for every n.
REFERENCES
D. Z. Dokovic, I. Kotsireas, D. Recoskie, J. Sawada, Charm bracelets and their application to the construction of periodic Golay pairs, Discrete Applied Mathematics, Volume 188, 19 June 2015, Pages 32-40.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Z. Dokovic, I. Kotsireas et al., Charm bracelets and their application to the construction of periodic Golay pairs, arXiv:1405.7328 [math.CO], 2014.
M. Engelhardt, The N queens problem.
R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.
FORMULA
Reference gives formula.
MAPLE
with(numtheory): M:=proc(k, L) local e, s: s:=1: for e from 1 do if(s mod L = 0) then RETURN(e) else s:=s+k^e fi od: end; C:=proc(k, t, p) local u: RETURN(add(M(k, p/igcd(p, u*(k-1)+t))^(-1), u=0..p-1)) :end; N:=proc(p) options remember: local s, t, k: if(p=1) then RETURN(2) fi: s:=0: for t from 0 to p-1 do for k from 1 to p-1 do if igcd(p, k)=1 then s:=s+2^C(k, t, p) fi od od: RETURN(s/(p*phi(p))):end; seq(N(p), p=1..51); # first M expression
with(numtheory): E:=proc(k, L) if(L=1) then RETURN(1) else RETURN(order(k, L)) fi end; M:=proc(k, L) local s, EkL: EkL:=E(k, L): if(k>1) then s:=(k^EkL-1)/(k-1): RETURN(L*EkL/igcd(L, s)) else RETURN(L*EkL/igcd(L, EkL)) fi end; C:=proc(k, t, p) local u: RETURN(add(M(k, p/igcd(p, u*(k-1)+t))^(-1), u=0..p-1)) :end; N:=proc(p) options remember: local s, t, k: if(p=1) then RETURN(2) fi: s:=0: for t from 0 to p-1 do for k from 1 to p-1 do if igcd(p, k)=1 then s:=s+2^C(k, t, p) fi od od: RETURN(s/(p*phi(p))):end; seq(N(p), p=1..51); # second M expression (Pab Ter)
MATHEMATICA
max = 38; m[k_, n_] := (s = 1; Do[ If[ Mod[s, n] == 0, Return[e], s = s + k^e ] , {e, 1, max}]); c[k_, t_, n_] := Sum[ m[k, n/GCD[n, u*(k-1) + t]]^(-1), {u, 0, n-1}]; a[n_] := (s = 0; Do[ If[ GCD[n, k] == 1 , s = s + 2^c[k, t, n]] , {k, 1, n-1}, {t, 0, n-1}]; s/(n*EulerPhi[n])); a[0] = 1; a[1] = 2; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Dec 06 2011, after Maple *)
CROSSREFS
Row 2 of A285548.
Cf. A002730.
Sequence in context: A252650 A265548 A062163 * A135510 A265398 A299438
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005
Entry revised by N. J. A. Sloane at the suggestion of Max Alekseyev, Jun 20 2007
STATUS
approved