login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252650
Expansion of (eta(q) * eta(q^2) * eta(q^3) / eta(q^6))^2 in powers of q.
5
1, -2, -3, 4, 6, 6, -12, -16, -3, 4, 36, 12, -12, -28, -24, 24, 6, 18, -12, -40, -18, 32, 72, 24, -12, -62, -42, 4, 48, 30, -72, -64, -3, 48, 108, 48, -12, -76, -60, 56, 36, 42, -96, -88, -36, 24, 144, 48, -12, -114, -93, 72, 84, 54, -12, -144, -24, 80, 180
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
C. Kassel and C. Reutenauer, On the Zeta Functions of Punctual Hilbert schemes of a Two-Dimensional Torus, arXiv:1505.07229 [math.AG], 2015, see page 31 7.2(d).
Christian Kassel, Christophe Reutenauer, The Fourier expansion of eta(z)eta(2z)eta(3z)/eta(6z), arXiv:1603.06357 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-q)^4 * f(q, q^2)^2 / f(-q^3)^2 = f(-q)^4 * f(-q^6)^2 / f(-q, -q^5)^2 in powers of q where f() is a Ramanujan theta function.
Expansion of b(q) * c(q) * sqrt(b(q^2) / (3 * c(q^2))) in powers of q where b(), c() are cubic AGM theta functions.
Euler transform of period 6 sequence [-2, -4, -4, -4, -2, -4, ...].
G.f.: Product_{k>0} (1 - x^k)^4 / (1 - x^k + x^(2*k))^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1296 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A098098.
EXAMPLE
G.f. = 1 - 2*q - 3*q^2 + 4*q^3 + 6*q^4 + 6*q^5 - 12*q^6 - 16*q^7 - 3*q^8 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q]*QP[q^2]*(QP[q^3]/QP[q^6]))^2 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A) * eta(x^3 + A) / eta(x^6 + A))^2, n))};
(Magma) A := Basis( ModularForms( Gamma0(36), 2), 58); A[1] - 2*A[2] - 3*A[3] + 4*A[4] + 6*A[5] + 6*A[6] - 12*A[7] - 16*A[8] - 3*A[9] + 4*A[10] + 36*A[11] - 12*A[12];
CROSSREFS
This is the square of the series in A258210.
Cf. A098098.
Sequence in context: A123131 A206398 A000793 * A265548 A062163 A002729
KEYWORD
sign
AUTHOR
Michael Somos, Mar 21 2015
STATUS
approved