Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:46:10
%S 1,-2,-3,4,6,6,-12,-16,-3,4,36,12,-12,-28,-24,24,6,18,-12,-40,-18,32,
%T 72,24,-12,-62,-42,4,48,30,-72,-64,-3,48,108,48,-12,-76,-60,56,36,42,
%U -96,-88,-36,24,144,48,-12,-114,-93,72,84,54,-12,-144,-24,80,180
%N Expansion of (eta(q) * eta(q^2) * eta(q^3) / eta(q^6))^2 in powers of q.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%H Seiichi Manyama, <a href="/A252650/b252650.txt">Table of n, a(n) for n = 0..10000</a>
%H C. Kassel and C. Reutenauer, <a href="http://arxiv.org/abs/1505.07229">On the Zeta Functions of Punctual Hilbert schemes of a Two-Dimensional Torus</a>, arXiv:1505.07229 [math.AG], 2015, see page 31 7.2(d).
%H Christian Kassel, Christophe Reutenauer, <a href="http://arxiv.org/abs/1603.06357">The Fourier expansion of eta(z)eta(2z)eta(3z)/eta(6z)</a>, arXiv:1603.06357 [math.NT], 2016.
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of f(-q)^4 * f(q, q^2)^2 / f(-q^3)^2 = f(-q)^4 * f(-q^6)^2 / f(-q, -q^5)^2 in powers of q where f() is a Ramanujan theta function.
%F Expansion of b(q) * c(q) * sqrt(b(q^2) / (3 * c(q^2))) in powers of q where b(), c() are cubic AGM theta functions.
%F Euler transform of period 6 sequence [-2, -4, -4, -4, -2, -4, ...].
%F G.f.: Product_{k>0} (1 - x^k)^4 / (1 - x^k + x^(2*k))^2.
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1296 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A098098.
%e G.f. = 1 - 2*q - 3*q^2 + 4*q^3 + 6*q^4 + 6*q^5 - 12*q^6 - 16*q^7 - 3*q^8 + ...
%t QP = QPochhammer; s = (QP[q]*QP[q^2]*(QP[q^3]/QP[q^6]))^2 + O[q]^60; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 25 2015 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A) * eta(x^3 + A) / eta(x^6 + A))^2, n))};
%o (Magma) A := Basis( ModularForms( Gamma0(36), 2), 58); A[1] - 2*A[2] - 3*A[3] + 4*A[4] + 6*A[5] + 6*A[6] - 12*A[7] - 16*A[8] - 3*A[9] + 4*A[10] + 36*A[11] - 12*A[12];
%Y This is the square of the series in A258210.
%Y Cf. A098098.
%K sign
%O 0,2
%A _Michael Somos_, Mar 21 2015