The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285548 Array read by antidiagonals: T(m,n) = number of step cyclic shifted sequences of length n using a maximum of m different symbols. 10
 1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 6, 10, 10, 5, 1, 6, 21, 20, 15, 6, 1, 13, 24, 55, 35, 21, 7, 1, 10, 92, 76, 120, 56, 28, 8, 1, 24, 78, 430, 201, 231, 84, 36, 9, 1, 22, 327, 460, 1505, 462, 406, 120, 45, 10, 1, 45, 443, 2605, 2015, 4291, 952, 666, 165, 55, 11 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See A056371, A002729 for an explanation of step shifts. Under step cyclic shifts, abcde, bdace, bcdea, cdeab and daceb etc. are equivalent. Equivalently, the number of mappings with domain {0..n-1} and codomain {1..m} up to equivalence.  Mappings A and B are equivalent if there is a d, prime to n, and a t such that A(i) = B((i*d + t) mod n) for i in {0..n-1}. All column sequences are polynomials of order n. REFERENCES M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2] LINKS Andrew Howroyd, Table of n, a(n) for n = 1..1275 R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270. EXAMPLE Table starts: 1  1  1   1   1     1     1      1      1       1 ... 2  3  4   6   6    13    10     24     22      45 ... 3  6 10  21  24    92    78    327    443    1632 ... 4 10 20  55  76   430   460   2605   5164   26962 ... 5 15 35 120 201  1505  2015  14070  37085  246753 ... 6 21 56 231 462  4291  6966  57561 188866 1519035 ... 7 28 84 406 952 10528 20140 192094 752087 7079800 ... ... MATHEMATICA IsLeastPoint[s_, f_] := Module[{t=f[s]}, While[t>s, t=f[t]]; Boole[s==t]]; c[n_, k_, t_] := Sum[IsLeastPoint[u, Mod[#*k+t, n]&], {u, 0, n-1}]; a[n_, x_] := Sum[If[GCD[k, n] == 1, x^c[n, k, t], 0], {t, 0, n-1}, {k, 1, n}] / (n*EulerPhi[n]); Table[a[n-m+1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *) PROG (PARI) IsLeastPoint(s, f)={my(t=f(s)); while(t>s, t=f(t)); s==t} C(n, k, t)=sum(u=0, n-1, IsLeastPoint(u, v->(v*k+t)%n)); a(n, x)=sum(t=0, n-1, sum(k=1, n, if (gcd(k, n)==1, x^C(n, k, t), 0)))/(n * eulerphi(n)); for(m=1, 7, for(n=1, 10, print1( a(n, m), ", ") ); print(); ); CROSSREFS Rows 2-6 are A002729, A056411, A056412, A056413, A056414. Cf. A285522, A132191. Sequence in context: A293311 A126885 A239986 * A130305 A323346 A143328 Adjacent sequences:  A285545 A285546 A285547 * A285549 A285550 A285551 KEYWORD nonn,tabl AUTHOR Andrew Howroyd, Apr 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 01:53 EDT 2021. Contains 347478 sequences. (Running on oeis4.)