login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143328
Table T(n,k) read by antidiagonals. T(n,k) is the number of primitive (=aperiodic) k-ary Lyndon words (n,k >= 1) with length less than or equal to n.
7
1, 2, 1, 3, 3, 1, 4, 6, 5, 1, 5, 10, 14, 8, 1, 6, 15, 30, 32, 14, 1, 7, 21, 55, 90, 80, 23, 1, 8, 28, 91, 205, 294, 196, 41, 1, 9, 36, 140, 406, 829, 964, 508, 71, 1, 10, 45, 204, 728, 1960, 3409, 3304, 1318, 127, 1, 11, 55, 285, 1212, 4088, 9695, 14569, 11464, 3502, 226, 1
OFFSET
1,2
FORMULA
T(n,k) = Sum_{1<=j<=n} (1/j) * Sum_{d|j} mu(j/d)*k^d.
T(n,k) = Sum_{1<=j<=n} A074650(j,k).
EXAMPLE
T(3,2) = 5, because 5 words of length <=3 over 2-letter alphabet {a,b} are primitive Lyndon words: a, b, ab, aab, abb.
Table begins:
1, 2, 3, 4, 5, ...
1, 3, 6, 10, 15, ...
1, 5, 14, 30, 55, ...
1, 8, 32, 90, 205, ...
1, 14, 80, 294, 829, ...
MAPLE
with(numtheory):
f0:= proc(n) option remember; unapply(k^n-add(f0(d)(k),
d=divisors(n)minus{n}), k)
end:
f2:= proc(n) option remember; unapply(f0(n)(x)/n, x) end:
g2:= proc(n) option remember; unapply(add(f2(j)(x), j=1..n), x) end:
T:= (n, k)-> g2(n)(k):
seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
f0[n_] := f0[n] = Function[k, k^n-Sum[f0[d][k], {d, Divisors[n]//Most}]]; f2[n_] := f2[n] = Function[x, f0[n][x]/n]; g2[n_] := g2[n] = Function[x, Sum[f2[j][x], {j, 1, n}]]; T[n_, k_] := g2[n][k]; Table[T[n, 1+d-n], {d, 1, 12}, {n, 1, d}]//Flatten (* Jean-François Alcover, Feb 12 2014, translated from Maple *)
CROSSREFS
Columns k=1-5 give: A000012, A062692, A114945, A114946, A114947.
Rows n=1-4 give: A000027, A000217, A000330, A132117.
Main diagonal gives A215475.
Sequence in context: A285548 A130305 A323346 * A192001 A122176 A159881
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 07 2008
STATUS
approved