OFFSET
1,5
COMMENTS
The coefficients of the polynomial of row n are given by the n-th row of triangle A134541; for example row 4 has polynomial -1+k^2+k^3.
LINKS
FORMULA
EXAMPLE
T(3,3) = 11, because 11 words of length <=3 over 3-letter alphabet {a,b,c} are primitive and earlier than others derived by cyclic shifts of the alphabet: a, ab, ac, aab, aac, aba, abb, abc, aca, acb, acc.
Table begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 5, 11, 19, 29, 41, 55, 71, ...
1, 11, 35, 79, 149, 251, 391, 575, ...
1, 26, 115, 334, 773, 1546, 2791, 4670, ...
1, 53, 347, 1339, 3869, 9281, 19543, 37367, ...
1, 116, 1075, 5434, 19493, 55936, 137191, 299510, ...
1, 236, 3235, 21754, 97493, 335656, 960391, 2396150, ...
MAPLE
with(numtheory):
f1:= proc (n) option remember; unapply(k^(n-1)
-add(f1(d)(k), d=divisors(n) minus {n}), k)
end:
g1:= proc(n) option remember; unapply(add(f1(j)(x), j=1..n), x) end:
T:= (n, k)-> g1(n)(k):
seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
t[n_, k_] := Sum[k^(d-1)*MoebiusMu[j/d], {j, 1, n}, {d, Divisors[j]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 13 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 07 2008
STATUS
approved