login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320087 Number of primitive (=aperiodic) ternary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet. 3
1, 3, 11, 35, 115, 347, 1075, 3235, 9787, 29387, 88435, 265315, 796755, 2390347, 7173227, 21519947, 64566667, 193700035, 581120523, 1743362283, 5230145947, 15690440099, 47071499707, 141214499227, 423644035627, 1270932113627, 3812797935395, 11438393826035 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..2096

FORMULA

a(n) = Sum_{j=1..n} Sum_{d|j} 3^(d-1) * mu(j/d).

a(n) = A143327(n,3).

a(n) = Sum_{j=1..n} A143325(j,3).

a(n) = A143326(n,3) / 3.

G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 3*x^k). - Ilya Gutkovskiy, Dec 11 2020

MAPLE

b:= n-> add(`if`(d=n, 3^(n-1), -b(d)), d=numtheory[divisors](n)):

a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:

seq(a(n), n=1..30);

MATHEMATICA

nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)

PROG

(PARI) a(n) = sum(j=1, n, sumdiv(j, d, 3^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020

CROSSREFS

Column k=3 of A143327.

Partial sums of A034741.

Cf. A008683, A143325, A143326.

Sequence in context: A125672 A107683 A259400 * A014335 A147474 A247417

Adjacent sequences: A320084 A320085 A320086 * A320088 A320089 A320090

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Oct 05 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 22:41 EDT 2023. Contains 361596 sequences. (Running on oeis4.)