|
|
A320090
|
|
Number of primitive (=aperiodic) 6-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
|
|
3
|
|
|
1, 6, 41, 251, 1546, 9281, 55936, 335656, 2015236, 12091631, 72557806, 435346876, 2612129211, 15672776566, 94036939331, 564221643971, 3385331551426, 20311989308806, 121871945977221, 731231675909811, 4387390115926096, 26324340695837771, 157946044538104906
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{j=1..n} Sum_{d|j} 6^(d-1) * mu(j/d).
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 6*x^k). - Ilya Gutkovskiy, Dec 11 2020
|
|
MAPLE
|
b:= n-> add(`if`(d=n, 6^(n-1), -b(d)), d=numtheory[divisors](n)):
a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:
seq(a(n), n=1..30);
|
|
MATHEMATICA
|
nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 6*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
|
|
PROG
|
(PARI) a(n) = sum(j=1, n, sumdiv(j, d, 6^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|