login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of primitive (=aperiodic) 6-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
3

%I #13 Dec 11 2020 06:58:57

%S 1,6,41,251,1546,9281,55936,335656,2015236,12091631,72557806,

%T 435346876,2612129211,15672776566,94036939331,564221643971,

%U 3385331551426,20311989308806,121871945977221,731231675909811,4387390115926096,26324340695837771,157946044538104906

%N Number of primitive (=aperiodic) 6-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.

%H Alois P. Heinz, <a href="/A320090/b320090.txt">Table of n, a(n) for n = 1..1285</a>

%F a(n) = Sum_{j=1..n} Sum_{d|j} 6^(d-1) * mu(j/d).

%F a(n) = A143327(n,6).

%F a(n) = Sum_{j=1..n} A143325(j,6).

%F a(n) = A143326(n,6) / 6.

%F G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - 6*x^k). - _Ilya Gutkovskiy_, Dec 11 2020

%p b:= n-> add(`if`(d=n, 6^(n-1), -b(d)), d=numtheory[divisors](n)):

%p a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:

%p seq(a(n), n=1..30);

%t nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 6*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Dec 11 2020 *)

%o (PARI) a(n) = sum(j=1, n, sumdiv(j, d, 6^(d-1)*moebius(j/d))); \\ _Michel Marcus_, Dec 11 2020

%Y Column k=6 of A143327.

%Y Partial sums of A320071.

%Y Cf. A008683, A143325, A143326.

%K nonn

%O 1,2

%A _Alois P. Heinz_, Oct 05 2018