login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259400
a(n) = Sum_{k=0..n} 2^k*p(k), where p(k) is the partition function A000041.
4
1, 3, 11, 35, 115, 339, 1043, 2963, 8595, 23955, 66963, 181651, 497043, 1324435, 3536275, 9303443, 24442259, 63370643, 164296083, 421197203, 1078654355, 2739598739, 6942291347, 17469994387, 43894109587, 109593687443, 273070880147, 677066241427, 1675109266835
OFFSET
0,2
COMMENTS
In general, Sum_{k=0..n} (m^k * p(k)) ~ m/(m-1) * m^n * p(n), for m > 1.
FORMULA
a(n) ~ 2^(n-1) * exp(Pi*sqrt(2*n/3)) / (n*sqrt(3)).
MATHEMATICA
Table[Sum[2^k*PartitionsP[k], {k, 0, n}], {n, 0, 40}]
CROSSREFS
Partial sums of A327550.
Sequence in context: A034576 A125672 A107683 * A320087 A014335 A147474
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 26 2015
STATUS
approved