login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014335 Exponential convolution of Fibonacci numbers with themselves (divided by 2). 12
0, 0, 1, 3, 11, 35, 115, 371, 1203, 3891, 12595, 40755, 131891, 426803, 1381171, 4469555, 14463795, 46805811, 151466803, 490156851, 1586180915, 5132989235, 16610702131, 53753361203, 173949530931, 562912506675, 1821623137075, 5894896300851, 19076285150003 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

It can be noticed that A014335/A011782 is an "autosequence", that is a sequence which is identical to its inverse binomial transform, except for alternating signs. - Jean-François Alcover, Jun 15 2016

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,2,-4).

FORMULA

a(n) = A014334(n)/2.

G.f.: x^2/((1-x)*(1-2*x-4*x^2)). - Vladeta Jovovic, Mar 05 2003

E.g.f.: exp(x)*(cosh(sqrt(5)*x)-1)/5. - Vladeta Jovovic, Sep 01 2004

From Benoit Cloitre, Sep 25 2004: (Start)

a(n+1) = Sum_{i=0..n} A000045(i)*2^(i-1).

a(n) = (1/5)*(2^(n-1)*A000032(n) - 1). (End)

a(n) = 2*a(n-1) + 4*a(n-2) + 1, a(0)=0; a(1)=0. - Zerinvary Lajos, Dec 14 2008

G.f.: G(0)*x^2/(2*(1-x)^2), where G(k)= 1 + 1/(1 - x*(5*k-1)/(x*(5*k+4) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

a(n) = (A203579(n) - 2)/5. - Vladimir Reshetnikov, Oct 06 2016

MAPLE

a[0]:=0:a[1]:=0:for n from 2 to 50 do a[n]:=2*a[n-1]+4*a[n-2]+1 od: seq(a[n], n=0..29); # Zerinvary Lajos, Dec 14 2008

# second Maple program:

a:= n-> (<<0|1|0>, <0|0|1>, <-4|2|3>>^n)[1, 3]:

seq(a(n), n=0..30); # Alois P. Heinz, Oct 04 2016

MATHEMATICA

LinearRecurrence[{3, 2, -4}, {0, 0, 1}, 41] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)

Table[(2^n LucasL[n] - 2)/10, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 06 2016 *)

PROG

(Magma) [(2^n*Lucas(n)-2)/10: n in [0..40]]; // G. C. Greubel, Jan 06 2023

(SageMath) [(2^n*lucas_number2(n, 1, -1) -2)/10 for n in range(41)] # G. C. Greubel, Jan 06 2023

CROSSREFS

Cf. A000032, A000045, A014334, A081057, A203579.

Cf. (partial sums of) A063727.

Column k=2 of A346415.

Sequence in context: A107683 A259400 A320087 * A147474 A247417 A222286

Adjacent sequences: A014332 A014333 A014334 * A014336 A014337 A014338

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 23:19 EDT 2023. Contains 361596 sequences. (Running on oeis4.)