login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203579
Exponential (or binomial) convolution of A000032 (Lucas) with itself, divided by 2.
4
2, 2, 7, 17, 57, 177, 577, 1857, 6017, 19457, 62977, 203777, 659457, 2134017, 6905857, 22347777, 72318977, 234029057, 757334017, 2450784257, 7930904577, 25664946177, 83053510657, 268766806017, 869747654657, 2814562533377, 9108115685377, 29474481504257
OFFSET
0,1
LINKS
Sergio Falcon, Half self-convolution of the k-Fibonacci sequence, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106.
FORMULA
a(n) = sum(binomial(n,k)*L(k)*L(n-k),k=0..n)/2, n>=0, with L(n)=A000032(n).
E.g.f.: (1/2)*(exp(phi*x)+exp(-(phi-1)*x))^2 =
exp(x)*(cosh(sqrt(5)*x)+1), with the golden section phi:=(1+sqrt(5))/2. (See the e.g.f. of A000032).
a(n) = 2^(n-1)*L(n) + 1.
a(n) = 5*A014335(n) + 2. - Vladimir Reshetnikov, Oct 06 2016
EXAMPLE
With A000032 = {2,1,3,4,7,...},
2*a(4) = 1*2*7 + 4*1*4 + 6*3*3 + 4*4*1 + 1*7*2 = 114.
MATHEMATICA
Array[Sum[Binomial[#, k] LucasL[k] LucasL[# - k], {k, 0, #}]/2 &, 28, 0] (* Michael De Vlieger, Dec 28 2020 *)
CROSSREFS
Sequence in context: A051769 A256400 A203176 * A338415 A243022 A049955
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 14 2012
STATUS
approved