login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203577
Exponential (or binomial) half-convolution of the sequence A000108 (Catalan) with itself.
2
1, 1, 4, 11, 58, 212, 1304, 5567, 37734, 178148, 1284124, 6501420, 48758648, 259775440, 2000594288, 11080668871, 86930955662, 496461841956, 3947716126292, 23113333523180, 185660199980696, 1109722749130576, 8983793097101144, 54645629076275356, 445109373450545608, 2748480598104423952
OFFSET
0,3
COMMENTS
For the definition of the exponential (also known as binomial) half-convolution of a sequence with itself see A203576, where also the rule for the e.g.f. is given.
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*Catalan(k)*Catalan(n-k), n >= 0.
E.g.f.: (C(x)^2 + C2(x^2))/2 with the e.g.f. C(x) of A000108, and the e.g.f. C2(x) := Sum_{n>=0} Catalan(n)^2*x^n/(n!)^2 of the scaled Catalan squares. See a comment above.
C(x) = hypergeom([1/2],[2],4*x) (see A000108 for the version involving BesselI functions), and
C2(x) = hypergeom([1/2,1/2],[1,2,2],16*x).
Recurrence: n*(n+1)^2 * (n+2)^2 * (3*n^6 - 39*n^5 + 166*n^4 - 322*n^3 + 316*n^2 - 153*n + 27)*a(n) = 12*(n-1)*n*(n+1)^2 * (3*n^7 - 34*n^6 + 113*n^5 - 121*n^4 - 19*n^3 + 68*n^2 + 17*n - 18)*a(n-1) + 32*(3*n^11 - 45*n^10 + 220*n^9 - 448*n^8 + 173*n^7 + 920*n^6 - 1696*n^5 + 842*n^4 + 580*n^3 - 846*n^2 + 360*n - 54)*a(n-2) - 768*(n-2)^3 * n *(3*n^7 - 34*n^6 + 113*n^5 - 121*n^4 - 19*n^3 + 68*n^2 + 17*n - 18)*a(n-3) + 2048*(n-3)^3 * (n-2)^2 * (3*n^6 - 21*n^5 + 16*n^4 + 12*n^3 + n^2 - 2)*a(n-4). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 2^(3*n+2)/(Pi*n^3) * (1 + (1+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, Feb 25 2014
EXAMPLE
With Catalan = A000108 = {1, 1, 2, 5, 14, 42, ...}
a(4) = 1*1*14 + 4*1*5 + 6*2*2 = 58.
a(5) = 1*1*42 + 5*1*14 + 10*2*5 = 212.
MATHEMATICA
a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k]*CatalanNumber[n - k], {k, 0, n/2}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 21 2013 *)
PROG
(PARI) hat(b, n) = sum(k=0, n\2, binomial(n, k)*b(k)*b(n-k))
A203577(n)=hat(A000108, n) \\ where A000108(n)=(2*n)!/n!/(n+1)! \\ - M. F. Hasler, Jan 13 2012
CROSSREFS
Cf. A203576, A000108, A014330 (exponential convolution).
Sequence in context: A363664 A282742 A032181 * A081073 A245545 A002831
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 13 2012
STATUS
approved