OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
From Vladeta Jovovic, Jan 01 2004: (Start)
E.g.f.: exp(4*x)*(BesselI(0, 2*x) - BesselI(1, 2*x))^2.
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k, k)/(k+1)*binomial(2*n-2*k, n-k)/(n-k+1).
a(n) = 4^n*Sum_{k=0..n} (-4)^(-k)*binomial(n, k)*binomial(k, floor(k/2))*binomial(k+1, floor((k+1)/2)).
a(n) = binomial(2*n, n)/(n+1)*hypergeometric3F2([-n-1, -n, 1/2], [2, 1/2-n], -1). (End)
(n + 1)*(n + 2)*a(n) = 4*(3*n^2 + n - 1)*a(n - 1) - 32*(n - 1)^2*a(n - 2). - Vladeta Jovovic, Jul 15 2004
G.f.: (1-6*x)*hypergeometric2F1([1/2, 1/2],[2],16*x^2/(4*x-1)^2)/(2*x*(4*x-1)) - x*(8*x-1)*hypergeometric2F1([3/2, 3/2],[3],16*x^2/(4*x-1)^2)/(4*x-1)^3 + 1/(2*x). - Mark van Hoeij, Oct 25 2011
E.g.f.: hypergeometric1F1([1/2],[2],4*x)^2, coinciding with the above given e.g.f. - Wolfdieter Lang, Jan 13 2012
a(n) ~ 8^(n+1) / (Pi*n^3). - Vaclav Kotesovec, Feb 25 2014
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[2*k, k]/(k+1)*Binomial[2*n-2*k, n-k]/(n-k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 25 2014 *)
PROG
(Magma)
A014330:= func< n | (&+[Binomial(n, k)*Catalan(k)*Catalan(n-k): k in [0..n]]) >;
[A014330(n): n in [0..40]]; // G. C. Greubel, Jan 06 2023
(SageMath)
def c(n): return catalan_number(n)
def A014330(n): return sum( binomial(n, k)*c(k)*c(n-k) for k in range(n+1))
[A014330(n) for n in range(41)] # G. C. Greubel, Jan 06 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Feb 27 2014
STATUS
approved