login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014330
Exponential convolution of Catalan numbers with themselves.
7
1, 2, 6, 22, 92, 424, 2108, 11134, 61748, 356296, 2123720, 13002840, 81417520, 519550880, 3369559864, 22161337742, 147544048324, 992923683912, 6746101933304, 46226667046360, 319199694771696, 2219445498261152, 15529758665102416, 109291258152550712
OFFSET
0,2
LINKS
FORMULA
From Vladeta Jovovic, Jan 01 2004: (Start)
E.g.f.: exp(4*x)*(BesselI(0, 2*x) - BesselI(1, 2*x))^2.
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k, k)/(k+1)*binomial(2*n-2*k, n-k)/(n-k+1).
a(n) = 4^n*Sum_{k=0..n} (-4)^(-k)*binomial(n, k)*binomial(k, floor(k/2))*binomial(k+1, floor((k+1)/2)).
a(n) = binomial(2*n, n)/(n+1)*hypergeometric3F2([-n-1, -n, 1/2], [2, 1/2-n], -1). (End)
(n + 1)*(n + 2)*a(n) = 4*(3*n^2 + n - 1)*a(n - 1) - 32*(n - 1)^2*a(n - 2). - Vladeta Jovovic, Jul 15 2004
a(n) = Sum_{k=0..n} binomial(n,k)*A000108(k)*A000108(n-k). - Philippe Deléham, Aug 23 2006
a(n) = (4*A053175(n) - A053175(n+1)/4) / ((n+2)*2^n). - Mark van Hoeij, Jul 02 2010
G.f.: (1-6*x)*hypergeometric2F1([1/2, 1/2],[2],16*x^2/(4*x-1)^2)/(2*x*(4*x-1)) - x*(8*x-1)*hypergeometric2F1([3/2, 3/2],[3],16*x^2/(4*x-1)^2)/(4*x-1)^3 + 1/(2*x). - Mark van Hoeij, Oct 25 2011
E.g.f.: hypergeometric1F1([1/2],[2],4*x)^2, coinciding with the above given e.g.f. - Wolfdieter Lang, Jan 13 2012
a(n) ~ 8^(n+1) / (Pi*n^3). - Vaclav Kotesovec, Feb 25 2014
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[2*k, k]/(k+1)*Binomial[2*n-2*k, n-k]/(n-k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 25 2014 *)
PROG
(PARI) A014330(n)=sum(k=0, n, binomial(n, k)*A000108(k)*A000108(n-k)) \\ M. F. Hasler, Jan 13 2012
(Magma)
A014330:= func< n | (&+[Binomial(n, k)*Catalan(k)*Catalan(n-k): k in [0..n]]) >;
[A014330(n): n in [0..40]]; // G. C. Greubel, Jan 06 2023
(SageMath)
def c(n): return catalan_number(n)
def A014330(n): return sum( binomial(n, k)*c(k)*c(n-k) for k in range(n+1))
[A014330(n) for n in range(41)] # G. C. Greubel, Jan 06 2023
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Vincenzo Librandi, Feb 27 2014
STATUS
approved