login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126869 a(n) = Sum_{k = 0..n} binomial(n,floor(k/2))*(-1)^(n-k). 24
1, 0, 2, 0, 6, 0, 20, 0, 70, 0, 252, 0, 924, 0, 3432, 0, 12870, 0, 48620, 0, 184756, 0, 705432, 0, 2704156, 0, 10400600, 0, 40116600, 0, 155117520, 0, 601080390, 0, 2333606220, 0, 9075135300, 0, 35345263800, 0, 137846528820, 0, 538257874440, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Hankel transform is 2^n. Successive binomial transforms are A002426, A000984, A026375, A081671, A098409, A098410.

From Andrew V. Sutherland, Feb 29 2008: (Start)

Counts returning walks of length n on a 1-d integer lattice with step set {-1,+1}.

Moment sequence of the trace of a random matrix in G = SO(2). If X = tr(A) is a random variable (A distributed with Haar measure on G), then a(n) = E[X^n].

Also the moment sequence of the trace of the k-th power of a random matrix in USp(2) = SU(2), for all k > 2.

(End)

From Paul Barry, Aug 10 2009: (Start)

The Hankel transform of 0,1,0,2,0,6,... is 0,-1,0,4,0,-16,0,... with general term I*(-4)^(n/2)(1 - (-1)^n)/4, I = sqrt(-1).

The Hankel transform of 1,1,0,2,0,6,... (which has g.f. 1 + x/sqrt(1 - 4*x^2)) is A164111. (End)

a(n) = A204293(2*n,n): central terms of the triangle in A204293. [Reinhard Zumkeller, Jan 14 2012]

a(n) is the total number of closed walks (round trips) of length n on the graph P_N (a line with N nodes and N-1 edges), divided by N, in the limit N -> infinity. See a comment on A198632 and a link under A201198. - Wolfdieter Lang, Oct 10 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011.

Francesc Fite and Andrew V. Sutherland, Sato-Tate distributions of twists of y^2= x^5-x and y^2= x^6+1, arXiv preprint arXiv:1203.1476 [math.NT], 2012. - From N. J. A. Sloane, Sep 14 2012

Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462

FORMULA

From Andrew V. Sutherland, Feb 29 2008: (Start)

a(2*n) = binomial(2*n,n) = A000984(n); a(2*n+1) = 0.

a(n) = Sum_{k = 0..n} A107430(n,k)*(-1)^(n-k).

a(n) = Sum_{k = 0..n} A061554(n,k)*(-1)^k.

a(n) = (1/Pi)*Integral_{t = 0..Pi} cos^n(t) dt. (End)

E.g.f.: I_0 (2x) where I_n(x) is the modified Bessel function as a function of x. - Benjamin Phillabaum, Mar 10 2011

G.f.: A(x) = 1/sqrt(1 - 4*x^2) - Vladimir Kruchinin, Apr 16 2011

a(n) = (1/Pi)*Integral{x = -2..2} x^n/sqrt((2 - x)*(2 + x)). - Peter Luschny, Sep 12 2011

a(n) = (-1)^floor(n/2) Hypergeometric([-n,-n],[1], -1). - Peter Luschny, Nov 01 2011

n*a(n) + (n-1)*a(n-1) + 4*(-n+1)*a(n-2) + 4*(-n+2)*a(n-3) = 0. - R. J. Mathar, Dec 03 2012

E.g.f.: E(0)/(1 - x) where E(k) = 1 - x/(1 - x/(x - (k+1)^2/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013

E.g.f.: 1 + x^2/(Q(0) - x^2), where Q(k)= x^2 + (k+1)^2 - x^2*(k+1)^2/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 28 2013

G.f.: 1/(1 - 2*x^2*Q(0)), where Q(k)= 1 + (4*k+1)*x^2/(k+1 - x^2*(2*k+2)*(4*k+3)/(2*x^2*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013

G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 2*x/(2*x + (k+1)/(x*(2*k+1))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013

G.f.: G(0)/(1+x), where G(k) = 1 + x*(2+5*x)*(4*k+1)/((4*k+2)*(1+x)^2 - 2*(2*k+1)*(4*k+3)*x*(2+5*x)*(1+x)^2/((4*k+3)*x*(2+5*x) + 4*(k+1)*(1+x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 19 2014

a(n) = 2^n*JacobiP(n,0,-1/2-n,-3)). - Peter Luschny, Aug 02 2014

a(n) = (2^(n-1)*((-1)^n+1)*Gamma((n+1)/2))/(sqrt(Pi)*Gamma((n+2)/2)). - Peter Luschny, Sep 10 2014

a(n) = n!*[x^n]hypergeom([],[1],x^2). - Peter Luschny, Jan 31 2015

a(n) = 2^n*hypergeom([1/2,-n],[1],2). - Peter Luschny, Feb 03 2015

From Peter Bala, Jul 25 2016: (Start)

a(n) = (-1)^floor(n/2)*Sum_{k = 0..n} (-1)^k*binomial(n,k)^2.

a(n) = 4*(n - 1)/n * a(n-2) with a(0) = 1, a(1) = 0. (End)

From Ilya Gutkovskiy, Jul 25 2016: (Start)

Inverse binomial transform of A002426.

a(n) = Sum_{k=0..n} (-1)^k*A128014(k).

a(n) ~ 2^n*((-1)^n + 1)/sqrt(2*Pi*n). (End)

EXAMPLE

a(4) = 6 {UUDD,UDUD,UDDU,DUUD,DUDU,DDUU}.

MAPLE

seq((-1)^(n/2)*pochhammer(-n, n/2)/(n/2)!, n=0..43); # Peter Luschny, May 17 2013

seq(n!*coeff(series(hypergeom([], [1], x^2), x, n+1), x, n), n=0..42); # Peter Luschny, Jan 31 2015

MATHEMATICA

Table[(-1)^Floor[n/2] HypergeometricPFQ[{-n, -n}, {1}, -1], {n, 0, 30}] (* Peter Luschny, Nov 01 2011 *)

PROG

(Haskell)

a126869 n = a204293_row (2*n) !! n  -- Reinhard Zumkeller, Jan 14 2012

(Sage)

A126869 = lambda n: (2^(n-1)*((-1)^n+1)*gamma((n+1)/2))/(sqrt(pi)*gamma((n+2)/2))

[A126869(n) for n in range(44)] # Peter Luschny, Sep 10 2014

CROSSREFS

This is A000984 with interspersed zeros.

Cf. A107430, A061554, A126120.

Sequence in context: A266537 A263789 A081153 * A094233 A094659 A137437

Adjacent sequences:  A126866 A126867 A126868 * A126870 A126871 A126872

KEYWORD

nonn,easy

AUTHOR

Philippe Deléham, Mar 16 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 16:27 EST 2016. Contains 278946 sequences.