OFFSET
0,3
COMMENTS
In general, a(n,m) = (2^n/m)*Sum_{k=0..m-1} cos(2*Pi*k/m)^n gives the number of closed walks of length n at a vertex of the cyclic graph on m nodes C_m.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-2).
FORMULA
a(n) = (2^n/7)*Sum_{k=0..6} cos(2*Pi*k/7)^n.
a(n) = 7(a(n-2) - 2a(n-4) + a(n-6)) + 2a(n-7).
G.f.: (1-x-2x^2+x^3)/((2x-1)(-1-x+2x^2+x^3)).
a(0)=1, a(1)=0, a(2)=2, a(3)=0, a(n)=a(n-1)+4*a(n-2)-3*a(n-3)-2*a(n-4). - Harvey P. Dale, Jun 12 2014
7*a(n) = 2^n + 2*A094648(n). - R. J. Mathar, Nov 03 2020
MATHEMATICA
f[n_] := FullSimplify[ TrigToExp[ 2^n/7 Sum[Cos[2Pi*k/7]^n, {k, 0, 6}]]]; Table[ f[n], {n, 0, 36}] (* Robert G. Wilson v, Jun 09 2004 *)
LinearRecurrence[{1, 4, -3, -2}, {1, 0, 2, 0}, 40] (* Harvey P. Dale, Jun 12 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Jun 06 2004
EXTENSIONS
More terms from Robert G. Wilson v, Jun 09 2004
STATUS
approved