login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094659
Number of closed walks of length n at a vertex of the cyclic graph on 7 nodes C_7.
2
1, 0, 2, 0, 6, 0, 20, 2, 70, 18, 252, 110, 924, 572, 3434, 2730, 12902, 12376, 48926, 54264, 187036, 232562, 720062, 980674, 2789164, 4086550, 10861060, 16878420, 42484682, 69242082, 166823430, 282580872, 657178982, 1148548016, 2595874468
OFFSET
0,3
COMMENTS
In general, a(n,m) = (2^n/m)*Sum_{k=0..m-1} cos(2*Pi*k/m)^n gives the number of closed walks of length n at a vertex of the cyclic graph on m nodes C_m.
FORMULA
a(n) = (2^n/7)*Sum_{k=0..6} cos(2*Pi*k/7)^n.
a(n) = 7(a(n-2) - 2a(n-4) + a(n-6)) + 2a(n-7).
G.f.: (1-x-2x^2+x^3)/((2x-1)(-1-x+2x^2+x^3)).
a(0)=1, a(1)=0, a(2)=2, a(3)=0, a(n)=a(n-1)+4*a(n-2)-3*a(n-3)-2*a(n-4). - Harvey P. Dale, Jun 12 2014
7*a(n) = 2^n + 2*A094648(n). - R. J. Mathar, Nov 03 2020
MATHEMATICA
f[n_] := FullSimplify[ TrigToExp[ 2^n/7 Sum[Cos[2Pi*k/7]^n, {k, 0, 6}]]]; Table[ f[n], {n, 0, 36}] (* Robert G. Wilson v, Jun 09 2004 *)
LinearRecurrence[{1, 4, -3, -2}, {1, 0, 2, 0}, 40] (* Harvey P. Dale, Jun 12 2014 *)
CROSSREFS
Cf. A199572 (m=2), A078008 (m=3), A199573 (m=4), A054877 (m=5), A047849 (bisection of m=6), A063376 (bisection of m=8), A094233 (m=9), A095929 (bisection of m=10), A087433 (bisection of m=12).
Sequence in context: A369278 A126869 A094233 * A321907 A361522 A137437
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Jun 06 2004
EXTENSIONS
More terms from Robert G. Wilson v, Jun 09 2004
STATUS
approved