login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137437
Triangular sequence from expansion coefficients of asymptotic Hermite Polynomial from Roman: p(x,t)= (1 + t)^(-x)*Exp[x*(t - t^2/2)].
0
1, 0, 0, 0, -2, 0, 6, 0, -24, 0, 120, 40, 0, -720, -420, 0, 5040, 3948, 0, -40320, -38304, -2240, 0, 362880, 396576, 50400
OFFSET
1,5
COMMENTS
Absolute values of row sums give A038205.
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 130.
FORMULA
p(x,t)= (1 + t)^(-x)*Exp[x*(t - t^2/2)]=Sum[q(x,n)*t^n/n!,{n,0,Infinity}]; out(n,m)=n!*Coefficients(q(x,n)).
EXAMPLE
{1},
{0},
{0},
{0, -2},
{0, 6},
{0, -24},
{0, 120, 40},
{0, -720, -420},
{0, 5040, 3948},
{0, -40320, -38304, -2240},
{0, 362880, 396576, 50400}
MATHEMATICA
p[t_] := (1 + t)^(-x)*Exp[x*(t - t^2/2)];
Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}];
a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}];
Flatten[{{1}, {0}, {0}, {0, -2}, {0, 6}, {0, -24}, {0, 120, 40}, {0, -720, -420}, {0, 5040, 3948}, {0, -40320, -38304, -2240}, {0, 362880, 396576, 50400}}]
CROSSREFS
Sequence in context: A094659 A321907 A361522 * A183189 A330609 A180047
KEYWORD
uned,tabf,sign
AUTHOR
Roger L. Bagula, Apr 21 2008
STATUS
approved