OFFSET
0,5
COMMENTS
An aerated version of A000142, which is the main entry for this sequence.
LINKS
Sebastian Volz, Design and Implementation of Efficient Algorithms for Operations on Partitions of Sets, Bachelor Thesis, Saarland Univ. (Germany, 2023). See p. 45.
Eric Weisstein's World of Mathematics, Error function erf.
FORMULA
a(n) = n! * [z^n] (z/2)*Pi^(1/2)*erf(z/2)*exp((z/2)^2) + 1.
a(n) = n! * [z^n] 1 + 2*u*exp(u)*hypergeom([1/2], [3/2], -u), where u = (z/2)^2.
MAPLE
egf := (z/2)*Pi^(1/2)*erf(z/2)*exp((z/2)^2) + 1:
ser := series(egf, z, 42): seq(n!*coeff(ser, z, n), n = 0..40);
MATHEMATICA
a[n_] := If[OddQ[n], 0, (n/2)!]; Array[a, 41, 0] (* Amiram Eldar, Mar 14 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 14 2023
STATUS
approved