login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330609
T(n, k) = binomial(n-k-1, k-1)*(n-k)!/k! for n >= 0 and 0 <= k <= floor(n/2). Irregular triangle read by rows.
1
1, 0, 0, 1, 0, 2, 0, 6, 1, 0, 24, 6, 0, 120, 36, 1, 0, 720, 240, 12, 0, 5040, 1800, 120, 1, 0, 40320, 15120, 1200, 20, 0, 362880, 141120, 12600, 300, 1, 0, 3628800, 1451520, 141120, 4200, 30, 0, 39916800, 16329600, 1693440, 58800, 630, 1
OFFSET
0,6
COMMENTS
Also the antidiagonals of the Lah triangle A271703.
LINKS
FORMULA
T(0,0) = T(2,1) = 1. If k < 1 or k > ceiling(n/2) then T(n,k) = 0. Otherwise:
T(n, k) = (n-1)*T(n-1, k) + T(n-2, k-1)
EXAMPLE
Triangle begins:
[0] 1
[1] 0
[2] 0, 1
[3] 0, 2
[4] 0, 6, 1
[5] 0, 24, 6
[6] 0, 120, 36, 1
[7] 0, 720, 240, 12
[8] 0, 5040, 1800, 120, 1
[9] 0, 40320, 15120, 1200, 20
MAPLE
T := (n, k) -> binomial(n-k-1, k-1)*(n-k)!/k!:
seq(seq(T(n, k), k=0..floor(n/2)), n=0..12);
# Alternative:
T := proc(n, k) option remember;
if (n=0 and k=0) or (n=2 and k=1) then 1 elif (k < 1) or (k > ceil(n/2)) then 0
else (n-1)*T(n-1, k) + T(n-2, k-1) fi end: seq(seq(T(n, k), k=0..n/2), n=0..12);
MATHEMATICA
Table[Binomial[n-k-1, k-1] (n-k)!/k!, {n, 0, 20}, {k, 0, Floor[n/2]}]//Flatten (* Harvey P. Dale, Oct 19 2021 *)
CROSSREFS
Variants: A180047, A221913. Row sums: A001053.
Cf. A271703.
Sequence in context: A361522 A137437 A183189 * A180047 A180397 A347133
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Dec 27 2019
STATUS
approved