login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094233
Number of closed walks of length n at a vertex of the cyclic graph on 9 nodes C_9.
3
1, 0, 2, 0, 6, 0, 20, 0, 70, 2, 252, 22, 924, 156, 3432, 910, 12870, 4760, 48622, 23256, 184796, 108528, 705894, 490314, 2708204, 2163150, 10430500, 9373652, 40313160, 40060078, 156305070, 169345560, 607812102, 709645552, 2369918628, 2952780320
OFFSET
0,3
COMMENTS
In general, a(n,m) = (2^n/m)*Sum_{k=0..m-1} cos(2*Pi*k/m)^n gives the number of closed walks of length n at a vertex of the cyclic graph on m nodes C_m.
FORMULA
a(n) = (2^n/9)*Sum_{k=0..8} cos(2*Pi*k/9)^n.
G.f.: -(x-1)*(x^3+3*x^2-1)/((2*x-1)*(x+1)*(x^3-3*x^2+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
9*a(n) = 2*(-1)^n +2^n +6*(-1)^n*A188048(n). - R. J. Mathar, Nov 03 2020
MATHEMATICA
f[n_] := FullSimplify[ TrigToExp[ 2^n/9 Sum[ Cos[2Pi*k/9]^n, {k, 0, 8}]]]; Table[ f[n], {n, 0, 40}] (* Robert G. Wilson v, Jun 01 2004 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, May 29 2004
EXTENSIONS
More terms from Robert G. Wilson v, Jun 01 2004
STATUS
approved