login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054877 Closed walks of length n along the edges of a pentagon based at a vertex. 8
1, 0, 2, 0, 6, 2, 20, 14, 70, 72, 254, 330, 948, 1430, 3614, 6008, 13990, 24786, 54740, 101118, 215766, 409640, 854702, 1652090, 3396916, 6643782, 13530350, 26667864, 53971350, 106914242, 215492564, 428292590, 860941798 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In general a(n,m)=2^n/m*Sum(k,0,m-1,Cos(2Pi*k/m)^n) counts closed walks of length n at a vertex of the cyclic graph on m nodes C_m. Here we have the case m=5. - Herbert Kociemba, May 31 2004

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = 2*A052964(n) for n>0.

G.f.: -1/5*1/(2*x-1)-2/5*(2+x)/(x^2-x-1).

a(n) = ( 2^n + 2*(-1)^n*( F(n) + F(n-2) ) )/5, for n>1, where F(n) is the n-th Fibonacci number (cf. A000045).

a(n) = (2^n/5)*Sum_{k=0..4} Cos(2Pi*k/5)^n). - Herbert Kociemba, May 31 2004

Recurrence: a(n) = 5*(a(n-2) - a(n-4)) + 2*a(n-5). - Herbert Kociemba, Jun 04 2004

MATHEMATICA

CoefficientList[Series[-1/5*1/(2*x - 1) - 2/5*(2 + x)/(x^2 - x - 1), {x, 0, 50}], x] (* G. C. Greubel, Jun 07 2017 *)

PROG

(PARI) x='x+O('x^50); Vec(-1/5*1/(2*x-1)-2/5*(2+x)/(x^2-x-1)) \\ G. C. Greubel, Jun 07 2017

CROSSREFS

Cf. A052964.

Sequence in context: A261883 A294779 A049257 * A269795 A095834 A106828

Adjacent sequences:  A054874 A054875 A054876 * A054878 A054879 A054880

KEYWORD

nonn,walk

AUTHOR

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 07:17 EDT 2018. Contains 316378 sequences. (Running on oeis4.)