login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054878 Number of closed walks of length n along the edges of a tetrahedron based at a vertex. 23
1, 0, 3, 6, 21, 60, 183, 546, 1641, 4920, 14763, 44286, 132861, 398580, 1195743, 3587226, 10761681, 32285040, 96855123, 290565366, 871696101, 2615088300, 7845264903, 23535794706, 70607384121, 211822152360, 635466457083 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of closed walks of length n at a vertex of C_4, the cyclic graph on 4 nodes. 3*A015518(n) + A054878(n) = 3^n. - Paul Barry, Feb 03 2004

Form the digraph with matrix A = [0,1,1,1; 1,0,1,1; 1,1,0,1; 1,0,1,1]; A054878(n) corresponds to the (1,1) term of A^n. - Paul Barry, Oct 02 2004

Absolute values of A084567 (compare generating functions).

For n > 1, 4*a(n)=A218034(n)= the trace of the n-th power of the adjacency matrix for a complete 4-graph, a 4 X 4 matrix with a null diagonal and all ones for off-diagonal elements. The diagonal elements for the n-th power are a(n) and the off-diagonal are a(n)+1 for an odd power and a(n)-1 for an even (cf. A001045). - Tom Copeland, Nov 06 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,3).

FORMULA

a(n) = (3^n + (-1)^n*3)/4.

G.f.: 1/4*(3/(1+x) + 1/(1-3*x)).

E.g.f.: (exp(3*x) + 3*exp(-x))/4. - Paul Barry, Apr 20 2003

a(n) = 3^n - a(n-1) with a(0)=0. - Labos Elemer, Apr 26 2003

From Paul Barry, Feb 03 2004: (Start)

G.f.: (1 - 3*x^2 - 2*x^3)/(1 - 6*x^2 - 8*x^3 - 3*x^4) = (1 - 3*x^2 - 2*x^3)/charpoly(adj(C_4)).

a(n) = 6*a(n-2) + 8*a(n-3) + 3*a(n-4). (End)

From Paul Barry, Oct 02 2004: (Start)

G.f.: (1-2*x)/(1 - 2*x - 3*x^2).

a(n) = 2*a(n-1) + 3*a(n-2).

a(n) = a(n-1) + 5*a(n-2) + 3*a(n-3). (End)

G.f.: 1 - x + x/Q(0), where Q(k) = 1 + 3*x^2 - (3*k+4)*x + x*(3*k+1 - 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013

MATHEMATICA

k=0; lst={1, k}; Do[k=3^n-k; AppendTo[lst, k], {n, 1, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)

PROG

(MAGMA) [(3^n+(-1)^n*3)/4: n in [0..35]]; // Vincenzo Librandi, Jun 30 2011

CROSSREFS

{a(n)/3} for n>0 is A015518.

Cf. A001045, A078008, A097073, A115341, A015518 (sequences where a(n)=3^n-a(n-1)). - Vladimir Joseph Stephan Orlovsky, Dec 11 2008

Sequence in context: A148622 A148623 A259273 * A084567 A261582 A135686

Adjacent sequences:  A054875 A054876 A054877 * A054879 A054880 A054881

KEYWORD

nonn,walk,easy

AUTHOR

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 00:38 EST 2016. Contains 278771 sequences.