The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259273 G.f.: A(x) = exp( Sum_{n>=1} 3^n * x^n/(n*(1+x^n)) ). 4
1, 3, 6, 21, 60, 174, 537, 1596, 4776, 14358, 43053, 129126, 387438, 1162272, 3486678, 10460307, 31380756, 94141830, 282426288, 847278282, 2541833808, 7625503749, 22876509444, 68629525032, 205888582014, 617665741140, 1852997213508, 5558991660912, 16676974967991, 50030924873862, 150092774683998 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Compare to: exp( Sum_{n>=1} x^n/(1+x^n)/n ) = Sum_{n>=0} x^(n*(n+1)/2).
LINKS
FORMULA
G.f.: -1/2 + (3/2)/(1+x - 3*x/(1+x^2 - 3*x^2/(1+x^3 - 3*x^3/(1+x^4 - 3*x^4/(1+x^5 - 3*x^5/(1+x^6 - 3*x^6/(1+x^7 - 3*x^7/(1+x^8 - 3*x^8/(...))))))))), a continued fraction.
G.f.: A(x) = (1 + x*B(x))/(1 - 2*x*B(x)), where B(x) = (1 + x^2*C(x))/(1 - 2*x^2*C(x)), C(x) = (1 + x^3*D(x))/(1 - 2*x^3*D(x)), D(x) = (1 + x^4*E(x))/(1 - 2*x^4*E(x)), ...
a(n) ~ c * 3^n, where c = 2 / (3^(1/8) * EllipticTheta(2, 0, 1/sqrt(3))) = 0.7289909630241618243925302344904284400138198884186993... - Vaclav Kotesovec, Oct 18 2020, updated Apr 18 2024
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 21*x^3 + 60*x^4 + 174*x^5 + 537*x^6 +...
such that
log(A(x)) = 3*x/(1+x) + 3^2*x^2/(2*(1+x^2)) + 3^3*x^3/(3*(1+x^3)) + 3^4*x^4/(4*(1+x^4)) + 3^5*x^5/(5*(1+x^5)) +...
MATHEMATICA
nmax = 40; CoefficientList[Series[Exp[Sum[3^k * x^k / (1 + x^k)/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 18 2020 *)
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, 3^m*x^m/(1+x^m+x*O(x^n))/m)), n))}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1 + x^(n+1-i)*A)/(1 - 2*x^(n+1-i)*A+ x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A148621 A148622 A148623 * A054878 A084567 A294527
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 23 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 05:37 EDT 2024. Contains 372807 sequences. (Running on oeis4.)