login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259273
G.f.: A(x) = exp( Sum_{n>=1} 3^n * x^n/(n*(1+x^n)) ).
4
1, 3, 6, 21, 60, 174, 537, 1596, 4776, 14358, 43053, 129126, 387438, 1162272, 3486678, 10460307, 31380756, 94141830, 282426288, 847278282, 2541833808, 7625503749, 22876509444, 68629525032, 205888582014, 617665741140, 1852997213508, 5558991660912, 16676974967991, 50030924873862, 150092774683998
OFFSET
0,2
COMMENTS
Compare to: exp( Sum_{n>=1} x^n/(1+x^n)/n ) = Sum_{n>=0} x^(n*(n+1)/2).
FORMULA
G.f.: -1/2 + (3/2)/(1+x - 3*x/(1+x^2 - 3*x^2/(1+x^3 - 3*x^3/(1+x^4 - 3*x^4/(1+x^5 - 3*x^5/(1+x^6 - 3*x^6/(1+x^7 - 3*x^7/(1+x^8 - 3*x^8/(...))))))))), a continued fraction.
G.f.: A(x) = (1 + x*B(x))/(1 - 2*x*B(x)), where B(x) = (1 + x^2*C(x))/(1 - 2*x^2*C(x)), C(x) = (1 + x^3*D(x))/(1 - 2*x^3*D(x)), D(x) = (1 + x^4*E(x))/(1 - 2*x^4*E(x)), ...
a(n) ~ c * 3^n, where c = 2 / (3^(1/8) * EllipticTheta(2, 0, 1/sqrt(3))) = 0.7289909630241618243925302344904284400138198884186993... - Vaclav Kotesovec, Oct 18 2020, updated Apr 18 2024
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 21*x^3 + 60*x^4 + 174*x^5 + 537*x^6 +...
such that
log(A(x)) = 3*x/(1+x) + 3^2*x^2/(2*(1+x^2)) + 3^3*x^3/(3*(1+x^3)) + 3^4*x^4/(4*(1+x^4)) + 3^5*x^5/(5*(1+x^5)) +...
MATHEMATICA
nmax = 40; CoefficientList[Series[Exp[Sum[3^k * x^k / (1 + x^k)/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 18 2020 *)
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, 3^m*x^m/(1+x^m+x*O(x^n))/m)), n))}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1 + x^(n+1-i)*A)/(1 - 2*x^(n+1-i)*A+ x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 23 2015
STATUS
approved