The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259271 G.f. A(x) satisfies: A'(x) = 2 * Series_Reversion( x - A(x)*A'(x) ). 5
 1, 1, 6, 61, 818, 13106, 238636, 4796157, 104441690, 2433287430, 60109378452, 1563967551762, 42642719385012, 1213585435256772, 35935842038596312, 1104324433869399581, 35143747323887055722, 1156109729255078573566, 39253565467948968047876, 1373742020268961592289798 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS G.f. G(x) of A259270 satisfies: G(x) = Series_Reversion( x - 2*A(x)*G(x) ) such that G(x) = A'(x)/2, where A(x) = Sum_{n>=1} a(n)*x^(2*n) is the g.f. of this sequence. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..200 FORMULA G.f. A(x) satisfies: (1) A'(x) = 2*x + 2*Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^n * A'(x)^n / n!. (2) A'(x) = 2*x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^n * A'(x)^n / (n!*x) ). a(n) = A259270(n) / n. a(n) == 1 (mod 2) iff n is a power of 2 (conjecture). EXAMPLE G.f.: A(x) = x^2 + x^4 + 6*x^6 + 61*x^8 + 818*x^10 + 13106*x^12 + 238636*x^14 +... Let G(x) be the g.f. of A259270 such that G(x) = A'(x)/2 = x + 2*x^3 + 18*x^5 + 244*x^7 + 4090*x^9 + 78636*x^11 + 1670452*x^13 + 38369256*x^15 +...+ A259270(n)*x^(2*n-1) +... then G( x - 2*A(x)*G(x) ) = x. Also, A'(x)/2 = x + A(x)*A'(x) + [d/dx A(x)^2*A'(x)^2]/2! + [d^2/dx^2 A(x)^3*A'(x)^3]/3! + [d^3/dx^3 A(x)^4*A'(x)^4]/4! + [d^4/dx^4 A(x)^5*A'(x)^5]/5! +... PROG (PARI) {a(n)=local(A=x^2); for(i=1, n, A=intformal(2*serreverse(x - A*A' +O(x^(2*n))))); polcoeff(A, 2*n)} for(n=1, 25, print1(a(n), ", ")) (PARI) {a(n)=local(A, G=x+x*O(x^n)); for(i=1, n, A=intformal(2*G); G = serreverse(x - 2*A*G +O(x^(2*n)))); polcoeff(A, 2*n)} for(n=1, 25, print1(a(n), ", ")) (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x^2); for(i=1, n, A = 2*intformal(x + sum(m=1, n+1, Dx(m-1, A^m*(A')^m/m!)) +O(x^(2*n+1)))); polcoeff(A, 2*n)} for(n=1, 25, print1(a(n), ", ")) (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x^2); for(i=1, n, A = 2*intformal(x*exp(sum(m=1, n, Dx(m-1, A^m*(A')^m/(m!*x))) +O(x^(2*n+1))))); polcoeff(A, 2*n)} for(n=1, 25, print1(a(n), ", ")) CROSSREFS Cf. A259270, A259272, A259269. Sequence in context: A064088 A342110 A191803 * A047737 A302535 A086403 Adjacent sequences: A259268 A259269 A259270 * A259272 A259273 A259274 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 23:20 EDT 2024. Contains 373401 sequences. (Running on oeis4.)