The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259271 G.f. A(x) satisfies: A'(x) = 2 * Series_Reversion( x - A(x)*A'(x) ). 5
1, 1, 6, 61, 818, 13106, 238636, 4796157, 104441690, 2433287430, 60109378452, 1563967551762, 42642719385012, 1213585435256772, 35935842038596312, 1104324433869399581, 35143747323887055722, 1156109729255078573566, 39253565467948968047876, 1373742020268961592289798 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
G.f. G(x) of A259270 satisfies: G(x) = Series_Reversion( x - 2*A(x)*G(x) ) such that G(x) = A'(x)/2, where A(x) = Sum_{n>=1} a(n)*x^(2*n) is the g.f. of this sequence.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A'(x) = 2*x + 2*Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^n * A'(x)^n / n!.
(2) A'(x) = 2*x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^n * A'(x)^n / (n!*x) ).
a(n) = A259270(n) / n.
a(n) == 1 (mod 2) iff n is a power of 2 (conjecture).
EXAMPLE
G.f.: A(x) = x^2 + x^4 + 6*x^6 + 61*x^8 + 818*x^10 + 13106*x^12 + 238636*x^14 +...
Let G(x) be the g.f. of A259270 such that
G(x) = A'(x)/2 = x + 2*x^3 + 18*x^5 + 244*x^7 + 4090*x^9 + 78636*x^11 + 1670452*x^13 + 38369256*x^15 +...+ A259270(n)*x^(2*n-1) +...
then G( x - 2*A(x)*G(x) ) = x.
Also,
A'(x)/2 = x + A(x)*A'(x) + [d/dx A(x)^2*A'(x)^2]/2! + [d^2/dx^2 A(x)^3*A'(x)^3]/3! + [d^3/dx^3 A(x)^4*A'(x)^4]/4! + [d^4/dx^4 A(x)^5*A'(x)^5]/5! +...
PROG
(PARI) {a(n)=local(A=x^2); for(i=1, n, A=intformal(2*serreverse(x - A*A' +O(x^(2*n))))); polcoeff(A, 2*n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A, G=x+x*O(x^n)); for(i=1, n, A=intformal(2*G); G = serreverse(x - 2*A*G +O(x^(2*n)))); polcoeff(A, 2*n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x^2); for(i=1, n, A = 2*intformal(x + sum(m=1, n+1, Dx(m-1, A^m*(A')^m/m!)) +O(x^(2*n+1)))); polcoeff(A, 2*n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x^2); for(i=1, n, A = 2*intformal(x*exp(sum(m=1, n, Dx(m-1, A^m*(A')^m/(m!*x))) +O(x^(2*n+1))))); polcoeff(A, 2*n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A064088 A342110 A191803 * A047737 A302535 A086403
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 23:20 EDT 2024. Contains 373401 sequences. (Running on oeis4.)