OFFSET
1,1
COMMENTS
G.f. G(x) of A259270 satisfies: G( x - 2*G(x)*H(x) ) = x, where H'(x) = 2*G(x).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..199
EXAMPLE
L.g.f.: L(x) = 4*x^2/2 + 64*x^4/4 + 1264*x^6/6 + 28064*x^8/8 + 675504*x^10/10 +...
where the g.f. of A259270 begins:
G(x) = x*exp(L(x)) = x + 2*x^3 + 18*x^5 + 244*x^7 + 4090*x^9 + 78636*x^11 +...+ A259270(n)*x^(2*n-1) +...
Now let H(x) = Integral G(x) dx, then
L(x) = 2*G(x)*H(x)/x + [d/dx 4*G(x)^2*H(x)^2/x]/2! + [d^2/dx^2 8*G(x)^3*H(x)^3/x]/3! + [d^3/dx^3 16*G(x)^4*H(x)^4/x]/4! + [d^4/dx^4 32*G(x)^5*H(x)^5/x]/5! +...
PROG
(PARI) {a(n)=local(A=x+x*O(x^n), B=x^2); for(i=1, n, B=intformal(2*A); A = serreverse(x - 2*A*B +O(x^(2*n+2)))); 2*n*polcoeff(log(A/x), 2*n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2015
STATUS
approved