login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259268
G.f. satisfies: A(x) = Series_Reversion( x - 3*A(x)*B(x)^2 ), where B'(x) = 2*A(x).
2
1, 3, 60, 1848, 70722, 3112692, 151785933, 8028464085, 454496257269, 27288493264020, 1726435358946081, 114532053780495258, 7937351775801976725, 572926949672305285692, 42967912938983806922313, 3341457670910162832959766, 268988340093587305693448265
OFFSET
1,2
COMMENTS
Conjecture: (2*n-1) | a(n) for n>=1 and therefore all the terms of this sequence are integers.
FORMULA
Let B(x) = Integral 2*A(x) dx, then g.f. A(x) satisfies:
(1) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) 3^n * A(x)^n * B(x)^(2*n) / n!.
(2) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) 3^n * A(x)^n * B(x)^(2*n) / (n!*x) ).
a(n)/(2*n-1) = A259269(n).
EXAMPLE
G.f.: A(x) = x + 3*x^5 + 60*x^9 + 1848*x^13 + 70722*x^17 + 3112692*x^21 +...
Let B(x) = Integral 2*A(x) dx, an integer series that begins:
B(x) = x^2 + x^6 + 12*x^10 + 264*x^14 + 7858*x^18 + 282972*x^22 + 11675841*x^26 +...+ A259269(n)*x^(4*n+2) +...
B(x)^2 = x^4 + 2*x^8 + 25*x^12 + 552*x^16 + 16388*x^20 + 587996*x^24 + 24175914*x^28 +...
then A(x - 3*A(x)*B(x)^2) = x, where
A(x)*B(x)^2 = x^5 + 5*x^9 + 91*x^13 + 2595*x^17 + 93962*x^21 + 3970616*x^25 + 187722645*x^29 +...
Series_Reversion(A(x)) = x - 3*x^5 - 15*x^9 - 273*x^13 - 7785*x^17 - 281886*x^21 - 11911848*x^25 +...
Also,
A(x) = x + 3*A(x)*B(x)^2 + [d/dx 9*A(x)^2*B(x)^4]/2! + [d^2/dx^2 27*A(x)^3*B(x)^6]/3! + [d^3/dx^3 81*A(x)^4*B(x)^8]/4! + [d^4/dx^4 243*A(x)^5*B(x)^10]/5! +...
Logarithmic series:
log(A(x)/x) = 2*A(x)*B(x)^2/x + [d/dx 9*A(x)^2*B(x)^4/x]/2! + [d^2/dx^2 27*A(x)^3*B(x)^6/x]/3! + [d^3/dx^3 81*A(x)^4*B(x)^8/x]/4! + [d^4/dx^4 243*A(x)^5*B(x)^10/x]/5! +...
PROG
(PARI) {a(n)=local(A=x, G=x^2); for(i=0, n, G=intformal(2*A); A = serreverse(x - 3*A*G^2 +O(x^(4*n)))); polcoeff(A, 4*n-3)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x*O(x^n), B=x^2); for(i=1, n, B=intformal(2*A); A = x + sum(m=1, n+1, Dx(m-1, 3^m*A^m*B^(2*m)/m!)) +O(x^(4*n))); polcoeff(A, 4*n-3)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x*O(x^n), B=x^2); for(i=1, n, B=intformal(2*A); A = x*exp(sum(m=1, n, Dx(m-1, 3^m*A^m*B^(2*m)/(m!*x))) +O(x^(4*n)))); polcoeff(A, 4*n-3)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2015
STATUS
approved