The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064088 Generalized Catalan numbers C(5; n). 9
 1, 1, 6, 61, 766, 10746, 161376, 2537781, 41260086, 687927166, 11698135396, 202104763026, 3537486504556, 62595852983236, 1117926476207316, 20124876291104421, 364797768048805926, 6652740911381353206 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=5, beta =1 (or alpha=1, beta=5). LINKS G. C. Greubel, Table of n, a(n) for n = 0..850 FORMULA G.f.: (1+5*x*c(5*x)/4)/(1+x/4) = 1/(1-x*c(5*x)) with c(x) g.f. of Catalan numbers A000108. a(n)= Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(5^m)/n. a(n) = (-1/4)^n*(1 - 5*Sum_{k=0..n-1} C(k)*(-20)^k, n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan). a(n) = Sum_{k=0..n} A059365(n, k)*5^(n-k). - Philippe Deléham, Jan 19 2004 From Gary W. Adamson, Jul 18 2011: (Start) a(n) = upper left term in M^n, M = an infinite square production matrix as follows: 1, 1, 0, 0, 0, 0, ... 5, 5, 5, 0, 0, 0, ... 5, 5, 5, 5, 0, 0, ... 5, 5, 5, 5, 5, 0, ... 5, 5, 5, 5, 5, 5, ... ... (End) Conjecture: 4*n*a(n) +(-79*n+120)*a(n-1) +10*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jun 07 2013 a(n) ~ 4^n * 5^(n+1) / (81*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 10 2019 MATHEMATICA a[0] = 1; a[n_] := Sum[(n - m)*Binomial[n - 1 + m, m]*5^m/n, {m, 0, n - 1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 09 2013 *) CoefficientList[Series[(9-Sqrt[1-20*x])/(2*(x+4)), {x, 0, 30}], x] (* G. C. Greubel, May 02 2019 *) PROG (PARI) a(n)=if(n<0, 0, polcoeff(serreverse((x-4*x^2)/(1+x)^2 +O(x^(n+1))), n)) /* Ralf Stephan */ (Magma) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (9-Sqrt(1-20*x))/(2*(x+4)) )); // G. C. Greubel, May 02 2019 (Sage) ( (9-sqrt(1-20*x))/(2*(x+4)) ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019 CROSSREFS Cf. A064087 (C(4, n)). Sequence in context: A142970 A034659 A369509 * A342110 A191803 A259271 Adjacent sequences: A064085 A064086 A064087 * A064089 A064090 A064091 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Sep 13 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 04:26 EDT 2024. Contains 373468 sequences. (Running on oeis4.)