This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059365 Another version of the Catalan triangle: T(r,s) = binomial(2*r-s-1,r-1) - binomial(2*r-s-1,r), r >= 0, 0 <= s <= r. 29
 0, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112. D. Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002. FindStat - Combinatorial Statistic Finder, The number of touch points of a Dyck path., The number of initial rises of a Dyck paths., The number of nodes on the left branch of the tree., The number of subtrees. A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002. FORMULA Essentially the same triangle as [0, 1, 1, 1, 1, 1, 1, ...] DELTA A000007, where DELTA is DelĂ©ham's operator defined in A084938, but the first term is T(0,0) = 0. EXAMPLE Triangle starts   0;   0,    1;   0,    1,    1;   0,    2,    2,    1;   0,    5,    5,    3,    1;   0,   14,   14,    9,    4,    1;   0,   42,   42,   28,   14,    5,   1;   0,  132,  132,   90,   48,   20,   6,   1;   0,  429,  429,  297,  165,   75,  27,   7,  1;   0, 1430, 1430, 1001,  572,  275, 110,  35,  8, 1;   0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1;   ... MATHEMATICA Table[Binomial[2*r - s - 1, r - 1] - Binomial[2*r - s - 1, r], {r, 0, 10}, {s, 0, r}] // Flatten (* G. C. Greubel, Jan 08 2017 *) PROG (PARI) tabl(nn) = { print(0); for (r=1, nn, for (s=0, r, print1(binomial(2*r-s-1, r-1)-binomial(2*r-s-1, r), ", "); ); print(); ); }  \\ Michel Marcus, Nov 01 2013 (MAGMA) /* as triangle */ [[[0] cat [Binomial(2*r-s-1, r-1)- Binomial(2*r-s-1, r): s in [1..r]]: r in [0..10]]]; // Vincenzo Librandi, Jan 09 2017 CROSSREFS See also the triangle in A009766. First 2 diagonals both give A000108, next give A000245, A002057. Cf. A009766 A000007 A084938 A000108. The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term. Essentially the same as A033184. The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072. Diagonals give A000108 A000245 A002057 A000344 A003517 A000588 A003518 A003519 A001392, ... Sequence in context: A128497 A011434 A147746 * A106566 A099039 A205574 Adjacent sequences:  A059362 A059363 A059364 * A059366 A059367 A059368 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Jan 28 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.