This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030237 Catalan's triangle with right border removed (n > 0, 0 <= k < n). 23
 1, 1, 2, 1, 3, 5, 1, 4, 9, 14, 1, 5, 14, 28, 42, 1, 6, 20, 48, 90, 132, 1, 7, 27, 75, 165, 297, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS This triangle appears in the totally asymmetric exclusion process as Y(alpha=1,beta=1,n,m), written in the Derrida et al. reference as Y_n(m) for alpha=1, beta=1. - Wolfdieter Lang, Jan 13 2006. REFERENCES B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672. LINKS Reinhard Zumkeller, Rows n=1..151 of triangle, flattened W. Lang: First 10 rows. Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757, 2015. See Fig. 6. FORMULA T(n,m) = (n-m+1)*binomial(n+m,m)/(n+1). EXAMPLE 1; 1,2; 1,3,5; 1,4,9,14; 1,5,14,28,42; 1,6,20,48,90,132; 1,7,27,75,165,297,429; 1,8,35,110,275,572,1001,1430; 1,9,44,154,429,1001,2002,3432,4862; MAPLE A030237 := proc(n, m)     (n-m+1)*binomial(n+m, m)/(n+1) ; end proc: # R. J. Mathar, May 31 2016 MATHEMATICA T[n_, k_] := T[n, k] = Which[k==0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1]]; Table[T[n, k], {n, 1, 9}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 14 2017 *) PROG (Haskell) a030237 n k = a030237_tabl !! n !! k a030237_row n = a030237_tabl !! n a030237_tabl = map init \$ tail a009766_tabl -- Reinhard Zumkeller, Jul 12 2012 (PARI) T(n, k) = (n-k+1)*binomial(n+k, k)/(n+1) \\ Andrew Howroyd, Feb 23 2018 CROSSREFS Cf. A009766. Row sums give A071724(n). The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072. Diagonals give A000108 A000245 A002057 A000344 A003517 A000588 A003518 A003519 A001392, ... Sequence in context: A297395 A297595 A049069 * A210557 A118243 A210233 Adjacent sequences:  A030234 A030235 A030236 * A030238 A030239 A030240 KEYWORD nonn,tabl,easy AUTHOR EXTENSIONS Missing a(8) = T(7,0) = 1 inserted by Reinhard Zumkeller, Jul 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 04:22 EST 2019. Contains 330013 sequences. (Running on oeis4.)