login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030240
Scaled Chebyshev U-polynomials evaluated at sqrt(7)/2.
13
1, 7, 42, 245, 1421, 8232, 47677, 276115, 1599066, 9260657, 53631137, 310593360, 1798735561, 10416995407, 60327818922, 349375764605, 2023335619781, 11717718986232, 67860683565157, 393000752052475, 2275980479411226, 13180858091511257, 76334143284700217
OFFSET
0,2
COMMENTS
Binomial transform of A030221. - Philippe Deléham, Nov 19 2009
LINKS
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=7, q=-7.
W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs. (38) and (45), lhs, m=7.
FORMULA
a(n) = 7*a(n-1)-7*a(n-2), a(-1)=0, a(0)=1; a(n)=sqrt(7)^n*U(n, sqrt(7)/2); G.f.: 1/(1-7*x+7*x^2); a(2*k)=7^k*A030221(k); a(2*k-1)=7^k*A004254(k)
a(n) = Sum_{k=0..n} A109466(n,k)*7^k. - Philippe Deléham, Oct 28 2008
MATHEMATICA
Join[{a=1, b=7}, Table[c=7*b-7*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
PROG
(Sage) [lucas_number1(n, 7, 7) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
(PARI) Vec(1/(1-7*x+7*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015
CROSSREFS
Sequence in context: A164072 A111995 A050152 * A054890 A102594 A053142
KEYWORD
nonn,easy
STATUS
approved