login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164072
a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
3
1, 7, 42, 238, 1316, 7196, 39144, 212408, 1151248, 6236272, 33772704, 182873824, 990172736, 5361148352, 29026768512, 157158071168, 850889810176, 4606905485056, 24942786537984, 135045615513088, 731165912572928
OFFSET
0,2
COMMENTS
Binomial transform of A081179 without initial 0. Inverse binomial transform of A164031.
FORMULA
a(n) = ((2+3*sqrt(2))*(4+sqrt(2))^n + (2-3*sqrt(2))*(4-sqrt(2))^n)/4.
G.f.: (1-x)/(1-8*x+14*x^2).
E.g.f.: (cosh(sqrt(2)*x) + (3*sqrt(2)/2)*sinh(sqrt(2)*x))*exp(4*x). - G. C. Greubel, Sep 09 2017
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - 8*x + 14*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{8, -14}, {1, 7}, 50] (* G. C. Greubel, Sep 09 2017 *)
PROG
(Magma) [ n le 2 select 6*n-5 else 8*Self(n-1)-14*Self(n-2): n in [1..21] ];
(PARI) x='x+O('x^50); Vec((1-x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Sep 09 2017
CROSSREFS
Sequence in context: A279613 A162744 A324945 * A111995 A050152 A030240
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 09 2009
STATUS
approved