OFFSET
1,2
COMMENTS
Binomial transform is A048654. Second binomial transform is A111567. Third binomial transform is A081179 without initial 0. Fourth binomial transform is A164072. Fifth binomial transform is A164031.
Absolute second differences are the sequence itself. - Eric Angelini, Jul 30 2013
Least number having n - 1 Gaussian prime factors, counted with multiplicity, excluding units. See A239628 for a similar sequence. - T. D. Noe, Mar 31 2014
Writing the prime factorizations of the terms of this sequence, the exponents of prime factor 2 give the integers repeated (A004526), while the exponents of prime factor 3 give the sequence of alternating 0's and 1's (A000035). - Alonso del Arte, Nov 30 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..2000
Index entries for linear recurrences with constant coefficients, signature (0, 2).
FORMULA
a(n) = (5 + (-1)^n) * 2^(1/4 * (2*n - 1 + (-1)^n))/4.
G.f.: x*(1 + 3 * x)/(1 - 2 * x^2).
a(n) = A074323(n), n>=1.
a(n) = A162255(n-1), n>=2.
a(n) = A072946(n-2), n > 2. - R. J. Mathar, Aug 17 2009
a(n+3) = a(n + 2) * a(n + 1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (2/3)a(n - 1) for odd n > 1, a(n) = 3a(n - 1) for even n. - Alonso del Arte, Nov 30 2016
MATHEMATICA
terms = 50; CoefficientList[Series[x * (1 + 3 * x)/(1 - 2 * x^2), {x, 0, terms}], x] (* T. D. Noe, Mar 31 2014 *)
Flatten[Table[{2^n, 3 * 2^n}, {n, 0, 31}]] (* Alonso del Arte, Nov 30 2016 *)
CoefficientList[Series[x (1 + 3 x)/(1 - 2 x^2), {x, 0, 44}], x] (* Michael De Vlieger, Dec 13 2016 *)
PROG
(Magma) [ n le 2 select 2*n-1 else 2*Self(n-2): n in [1..42] ];
(PARI) a(n) = (5 + (-1)^n) * 2^((2*n-9)\/4)
(PARI) Vec(x*(1+3*x)/(1-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 13 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Aug 09 2009
STATUS
approved