login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239628
Factored over the Gaussian integers, the least positive number having n prime factors counted multiply, including units -1, i, and -i.
3
1, 9, 2, 6, 4, 12, 8, 16, 48, 144, 32, 96, 64, 192, 128, 256, 768, 2304, 512, 1536, 1024, 3072, 2048, 4096, 12288, 36864, 8192, 24576, 16384, 49152, 32768, 65536, 196608, 589824, 131072, 393216, 262144, 786432, 524288, 1048576, 3145728, 9437184, 2097152
OFFSET
1,2
COMMENTS
Here -1, i, and -i are counted as factors. The factor 1 is counted only in a(1). All these numbers of products of 2^k, 3, and 9.
Similar to A164073, which gives the least integer having n prime factors (over the Gaussian integers) shifted by 1.
EXAMPLE
a(2) = 9 because 9 = 3 * 3.
a(3) = 2 because 2 = -i * (1 + i)^2.
a(4) = 6 because 6 = -i * (1 + i)^2 * 3.
MATHEMATICA
nn = 30; t = Table[0, {nn}]; n = 0; found = 0; While[found < nn, n++; cnt = Total[Transpose[FactorInteger[n, GaussianIntegers -> True]][[2]]]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = n; found++]]; t
CROSSREFS
Cf. A001221, A001222 (integer factorizations).
Cf. A078458, A086275 (Gaussian factorizations).
Cf. A164073 (least number having n Gaussian factors, excluding units);
Cf. A239627 (number of Gaussian factors of n, including units).
Cf. A239629, A239630 (similar, but count distinct prime factors).
Sequence in context: A298852 A093066 A155168 * A160262 A107821 A154162
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 31 2014
STATUS
approved