OFFSET
1,5
COMMENTS
As shown in the formula, a(n) depends on the number of distinct primes of the forms 4*k+1 (A005089) and 4*k-1 (A005091) and whether n is divisible by 2 (A059841).
Note that associated divisors are counted only once. - Jianing Song, Aug 30 2018
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Gaussian Prime.
FORMULA
Additive with a(p^e) = 2 if p = 1 (mod 4), 1 otherwise. - Franklin T. Adams-Watters, Oct 18 2006
EXAMPLE
a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 1 + 2*1 + 3 = 6 because n is divisible by 2, has 1 prime factor of the form 4*k+1 and 3 primes of the form 4*k+3. Over the Gaussian integers, 1006655265000 is factored as i*(1 + i)^6*(2 + i)^4*(2 - i)^4*3^2*7^5*11^3, the 6 distinct Gaussian factors are 1 + i, 2 + i, 2 - i, 3, 7 and 11.
MATHEMATICA
Join[{0}, Table[f=FactorInteger[n, GaussianIntegers->True]; cnt=Length[f]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt-- ]; cnt, {n, 2, 100}]]
a[n_]:=If[n==2, 1, PrimeNu[n, GaussianIntegers -> True]]; Array[a, 100] (* Stefano Spezia, Sep 29 2024 *)
PROG
(PARI) a(n)=my(f=factor(n)[, 1]); sum(i=1, #f, if(f[i]%4==1, 2, 1)) \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), this sequence ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319443.
KEYWORD
easy,nonn
AUTHOR
T. D. Noe, Jul 14 2003
STATUS
approved