|
|
A005089
|
|
Number of distinct primes = 1 mod 4 dividing n.
|
|
9
|
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,65
|
|
COMMENTS
|
a(n) = Sum(A079260(A027748(n,k)): k=1..A001221(n)); a(A004144(n)) = 0; a(A009003(n)) > 0. - Reinhard Zumkeller, Jan 07 2013
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
Additive with a(p^e) = 1 if p = 1 (mod 4), 0 otherwise.
|
|
MATHEMATICA
|
f[n_]:=Length@Select[If[n==1, {}, FactorInteger[n]], Mod[#[[1]], 4]==1&]; Table[f[n], {n, 102}] (* Ray Chandler, Dec 18 2011 *)
a[n_] := DivisorSum[n, Boole[PrimeQ[#] && Mod[#, 4] == 1]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
|
|
PROG
|
(PARI) for(n=1, 100, print1(sumdiv(n, d, isprime(d)*if((d-1)%4, 0, 1)), ", "))
(Haskell)
a005089 = sum . map a079260 . a027748_row
-- Reinhard Zumkeller, Jan 07 2013
|
|
CROSSREFS
|
Cf. A001221, A005091, A005094.
Sequence in context: A320005 A325414 A216510 * A119395 A087476 A307505
Adjacent sequences: A005086 A005087 A005088 * A005090 A005091 A005092
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|