|
|
A009003
|
|
Hypotenuse numbers (squares are sums of 2 nonzero squares).
|
|
65
|
|
|
5, 10, 13, 15, 17, 20, 25, 26, 29, 30, 34, 35, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55, 58, 60, 61, 65, 68, 70, 73, 74, 75, 78, 80, 82, 85, 87, 89, 90, 91, 95, 97, 100, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120, 122, 123, 125, 130, 135, 136, 137, 140
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Multiples of Pythagorean primes A002144 or of primitive Pythagorean triangles' hypotenuses A008846. - Lekraj Beedassy, Nov 12 2003
This is exactly the sequence of positive integers with at least one prime divisor of the form 4k + 1. Compare A072592. - John W. Layman, Mar 12 2008 and Franklin T. Adams-Watters, Apr 26 2009
Circumradius R of the triangles such that the area, the sides and R are integers. - Michel Lagneau, Mar 03 2012
The 2 squares summing to a(n)^2 cannot be equal because sqrt(2) is not rational. - Jean-Christophe Hervé, Nov 10 2013
Closed under multiplication. The primitive elements are those with exactly one prime divisor of the form 4k + 1 with multiplicity one, which are also those for which there exists a unique integer triangle = A084645. - Jean-Christophe Hervé, Nov 11 2013
a(n) are numbers whose square is the mean of two distinct nonzero squares. This creates 1-to-1 mapping between a Pythagorean triple and a "Mean" triple. If the Pythagorean triple is written, abnormally, as {j, k, h} where j^2 +(j+k)^2 = h^2, and h = a(n), then the corresponding "Mean" triple with the same h is {k, 2j, h} where (k^2 + (k+2j)^2)/2 = h^2. For example for h = 5, the Pythagorean triple is {3, 1, 5} and the Mean triple is {1, 6, 5}. - Richard R. Forberg, Mar 01 2015
Integral side lengths of rhombuses with integral diagonals p and q (therefore also with integral areas A because A = pq/2 is some multiple of 24). No such rhombuses are squares. - Rick L. Shepherd, Apr 09 2017
Conjecture: these are bases n in which exists an n-adic integer x satisfying x^5 = x, and 5 is the smallest k>1 such that x^k =x (so x^2, x^3 and x^4 are not x). Example: the 10-adic integer x = ...499879186432 (A120817) satisfies x^5 = x, and x^2, x^3, and x^4 are not x, so 10 is in this sequence. See also A120817, A210850 and A331548. - Patrick A. Thomas, Mar 01 2020
|
|
REFERENCES
|
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
R. Chapman, Pythagorean triples and sums of squares
Steven R. Finch, Landau-Ramanujan Constant [Broken link]
Steven R. Finch, Landau-Ramanujan Constant [From the Wayback machine]
Ron Knott, Pythagorean Triples and Online Calculators
J. Pahikkala, On contraharmonic mean and Pythagorean triples, Elemente der Mathematik, 65:2 (2010), 62-67.
Patrick A. Thomas, Solutions of x^5=x up to base 100
Index entries for sequences related to sums of squares
|
|
FORMULA
|
A005089(a(n)) > 0. - Reinhard Zumkeller, Jan 07 2013
a(n) ~ n. - Charles R Greathouse IV, Jan 13 2022
|
|
MAPLE
|
isA009003 := proc(n)
local p;
for p in numtheory[factorset](n) do
if modp(p, 4) = 1 then
return true;
end if;
end do:
false;
end proc:
for n from 1 to 200 do
if isA009003(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Nov 17 2014
|
|
MATHEMATICA
|
f[n_] := Module[{k = 1}, While[(n - k^2)^(1/2) != IntegerPart[(n - k^2)^(1/2)], k++; If[2 * k^2 >= n, k = 0; Break[]]]; k]; A009003 = {}; Do[If[f[n^2] > 0, AppendTo[A009003, n]], {n, 3, 100}]; A009003 (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
Select[Range[200], Length[PowersRepresentations[#^2, 2, 2]] > 1 &] (* Alonso del Arte, Feb 11 2014 *)
|
|
PROG
|
(PARI) is_A009003(n)=setsearch(Set(factor(n)[, 1]%4), 1) \\ M. F. Hasler, May 27 2012
(PARI) list(lim)=my(v=List(), u=vectorsmall(lim\=1)); forprimestep(p=5, lim, 4, forstep(n=p, lim, p, u[n]=1)); for(i=5, lim, if(u[i], listput(v, i))); u=0; Vec(v) \\ Charles R Greathouse IV, Jan 13 2022
(Haskell)
import Data.List (findIndices)
a009003 n = a009003_list !! (n-1)
a009003_list = map (+ 1) $ findIndices (> 0) a005089_list
-- Reinhard Zumkeller, Jan 07 2013
|
|
CROSSREFS
|
Cf. A009000, A024507, A004431, A072592, A004613, A187811.
Complement of A004144. Primes in this sequence give A002144. Same as A146984 (integer contraharmonic means) as sets - see Pahikkala 2010, Theorem 5.
Cf. A083025, A084645 (primitive elements), A084646, A084647, A084648, A084649, A006339.
Sequence in context: A198389 A057100 A304436 * A071821 A334678 A201012
Adjacent sequences: A009000 A009001 A009002 * A009004 A009005 A009006
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David W. Wilson
|
|
EXTENSIONS
|
Definition edited by Jean-Christophe Hervé, Nov 10 2013
|
|
STATUS
|
approved
|
|
|
|